Section 2.6: Combinations of Functions

Objectives:

- 1. Learn how to add, subtract, multiply and divide functions.
- 2. Learn how to find domain of the new functions formed by the above operations.
- 3. Learn how to compose functions and how to find the domain of the new function.
- 4. Learn how to "decompose" functions

Consider the functions

$$f(x) = 2x - 5$$

$$g(x) = 2 - x$$

Operation	Notation and Illustration
Addition	(f+g)(x) = f(x) + g(x) = (2x-5) + (2-x) = x-3
Subtraction $(g \text{ from } f)$	(f-g)(x) = f(x) - g(x) = (2x-5) - (2-x) = 3x - 7
	(g-f)(x) = g(x) - f(x)
(f from g)	
Multiplication	(fg)(x) = f(x)g(x)
Division	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

Examples: Evaluate the following where f and g are as given above:

- 1. (f+g)(2) =
- 2. (g f)(-1) =
- 3. (fg)(-1) =
- 4. $\left(\frac{f}{g}\right)(0) =$

The domain of an *arithmetic combination* of functions f and g consists of all real numbers that are common to the domains of f and g. In case of dividing two functions, we need to make sure to exclude values of x that make the denominator zero.

Examples: Find the domain of the following functions given $f(x) = \sqrt{x^2 - 4}$ and $g(x) = \sqrt{1 - x}$.

- 1. f + g
- 2. f/g
- 3. g/f

Composition of Functions:

Two functions f and g can be composed in two ways:

1. f composed with g is written $f \circ g$

$$(f \circ g)(x) = f(g(x))$$

Example: $f(x) = x^2 - 4$ and g(x) = 1 - x

$$(f \circ g)(x) =$$

2. g composed with f is written $g \circ f$

$$(g \circ f)(x) = g(f(x))$$

Example: $f(x) = x^2 - 4$ and g(x) = 1 - x

$$(g \circ f)(x) =$$

Example: Find $(f \circ g)(2)$ where f and g are as given above.

The domain of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f. The domain of $g \circ f$ is the set of all x in the domain of f such that f(x) is in the domain of g.

Example: Find the domain of $f \circ g$ and $g \circ f$ where $f(x) = \frac{3}{x^2 - 1}$ and g(x) = x + 1.

Decomposition of Functions:

Examples: Find two functions f and g such that $(f \circ g)(x) = h(x)$.

1. $h(x) = (1 - x)^3$

2.
$$h(x) = \frac{4}{(5x+2)^2}$$