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NOVEL STRUCTURES IN STANLEY SEQUENCES

RICHARD A. MOY AND DAVID ROLNICK

Abstract. Given a set of integers with no three in arithmetic progression, we construct
a Stanley sequence by adding integers greedily so that no arithmetic progression is formed.
This paper offers two main contributions to the theory of Stanley sequences. First, we char-
acterize well-structured Stanley sequences as solutions to constraints in modular arithmetic,
defining the modular Stanley sequences. Second, we introduce the basic Stanley sequences,
where elements arise as the sums of subsets of a basis sequence, which in the simplest case
is the powers of 3. Applications of our results include the construction of Stanley sequences
with arbitrarily large gaps between terms, answering a weak version of a problem by Erdős
et al. Finally, we generalize many results about Stanley sequences to p-free sequences, where
p is any odd prime.

1. Introduction

A set of nonnegative integers is said to be p-free if it contains no p-term arithmetic
progressions. There is great interest in finding the maximum cardinality rp(n) of a p-free
subset of {0, 1, . . . , n}. Some work has gone into computing explicit values of rp(n) for small
values of p and n [7, 11, 12, 22, 8, 3, 1]. However, the vast majority of research about rp(n)
has involved its asymptotic behavior. In 1936, Erdős and Turán [7] stated a conjecture of
Szekeres that, for an odd prime p, implied rp(n) = Θ(nlogp(p−1)). Szekeres’ conjecture was
disproven by Salem and Spencer [19] in 1942 when they showed that as n → ∞, one has

r3(n) > n1− log 2+ǫ

log log n for every ǫ > 0.
This bound was improved by Behrend [2] in 1946, when he proved that as N → ∞,

one has r3(n) > n
1− 2

√

2 log 2+ǫ
√

logn for every ǫ > 0. This result was slightly improved by Elkin
[4] in 2008, and a shorter proof of Elkin’s result was soon discovered by Green and Wolf
[9]. Unfortunately, these lower bounds for r3(n) are far from the upper bounds r3(n) =

O
(

n
log logn

)

achieved by Roth [18], r3(n) = O

(

n

(log n)
1
20

)

achieved by Heath-Brown [10], and

then r3(n) = O
(

n(log logn)5

logn

)

achieved by Sanders [20].

In 1978, Odlyzko and Stanley [15] proposed constructing 3-free sequences according to the
greedy algorithm.

Definition 1.1. Let A = {a0, . . . , ak} be a 3-free set of nonnegative integers satisfying
a0 < · · · < ak. We define the Stanley sequence S(A) = (an) generated by A recursively as
follows. If a0 < · · · < an have already been defined, then an+1 is the smallest positive integer
greater than an such that {a0, . . . , an, an+1} is 3-free.
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In a slight abuse of notation, we will often write S(a0, . . . , ak) for S({a0, . . . , ak}). We will
also sometimes consider the sequence S(A) as a set.

The name “Stanley sequences” originates with Erdős et al. [6], who generalized the pro-
cedure above from the case of |A| = 2, as originally proposed by Odlyzko and Stanley. The
simplest Stanley sequence is S(0) = 0, 1, 3, 4, 9, 10, 12, 13, 27, . . . , the elements of which are
exactly those integers with no 2’s in their ternary expansion; the growth rate of this sequence
matches the proposed bound of Szekeres and indeed motivated this conjecture. Remarkably,
Stanley sequences appear to exhibit two distinct patterns of asymptotic growth [15, 5, 6],
with no intermediate growth rate possible. While some sets A, such as A = {0}, lead to
highly ordered Stanley sequences S(A) (Type 1 growth), others lead to chaotic sequences
(Type 2 growth). The original conjecture of Odlyzko and Stanley was generalized by Rolnick
in [16, Conjecture 1.1] as follows.

Conjecture 1.2. Let S(A) = (an) be a Stanley sequence. Then, for all n large enough, one
of the following two patterns of growth is satisfied.

(1) α/2 ≤ lim inf an/n
log2 3 ≤ lim sup an/n

log2 3 ≤ α, or
(2) an = Θ(n2/ logn).

Although only the case α = 1 was considered by Odlyzko and Stanley [15], Rolnick and
Venkataramana have shown [17] that every rational number α = 1 is possible for which
the denominator is a power of 3. Odlyzko and Stanley showed that Type 2 growth is, in
some sense, the “expected” growth of a Stanley sequence, assuming that elements occur in
the sequence according to a continuous probability distribution. This justifies the formula
Θ(n2/ logn), which has been experimentally verified by Lindhurst [13] up to large values of
the sequence S(0, 4). However, no Stanley sequence, including S(0, 4), has been definitively
proven to satisfy Type 2 growth. In this paper, we will study the behavior of Type 1
sequences, thus making progress towards Conjecture 1.2.

Erdős et al. posed several problems on the the asymptotic behavior of Stanley sequences.
In [14], Moy solved Problem 1 of [6] by proving that in any Stanley sequence (an), the terms
an grow no faster than n2/(2+ ǫ), where ǫ is an arbitrary constant. An effective lower bound
(Problem 2) remains open; that is, proving lim inf log an/ logn < 1, where the lim inf is
conjectured to be log2 3.

Erdős et al. also consider the gaps between consecutive elements, asking whether there
exists a Stanley sequence (an) for which lim inf(an+1 − an) = ∞ (Problem 4, [6]). A weaker
version of this question (Problem 6) was answered in the affirmative by Savchev and Chen
[21], who constructed a 3-free sequence (an) satisfying lim inf(an+1 − an) = ∞ for which
no integer can be added without violating the 3-free property; this sequence is however not
a Stanley sequence. Among the results in this paper, we show that there exist Stanley
sequences for which lim inf(an+1 − an) is arbitrarily large.

As noted in Erdős and Graham [5, page 22], sequences like S(0, 4) seem to admit no closed-
form description. However, Rolnick [16] has extensively studied sequences that exhibit Type
1 growth, constructing many novel sequences of this form. In particular, [16] introduces the
concept of independent and regular Stanley sequences, which satisfy Type 1 growth. Rolnick
conjectures that these are in fact the only Type 1 sequences; in this paper, however, we will
show that the definitions must be slightly modified for this conjecture to hold.
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Definition 1.3. A Stanley sequence S(A) = (an) is independent if there exist constants
λ = λ(A) and κ = κ(A) such that for all k ≥ κ and 0 ≤ i < 2k, we have

• a2k+i = a2k + ai,
• a2k = 2a2k−1 − λ+ 1.

The constant λ is referred to as the character ; it is proven in [16] that λ ≥ 0 for all
independent Stanley sequences. If κ is taken as small as possible, then a2κ is called the
repeat factor ; informally, it is the point at which the sequence begins its repetitive behavior.
It is proven in [17] for any sufficiently large integer ρ, there is an independent Stanley
sequence with repeat factor ρ.

Example 1.4. The sequence S(0, 1, 7) is independent, with character λ = 7 and repeat
factor a4 = 10.

S(0, 1, 7) = 0, 1, 7, 8, 10, 11, 17, 18, 30, 31, 37, 38, 40, 41, 47, 48, 90, . . .

Notice that the terms a4, a5, a6, a7 are simply the terms a0, a1, a2, a3 increased by 10. Like-
wise, terms a8 through a15 equal the terms a0 through a7 increased by 30; this illustrates
the first condition of an independent sequence. Furthermore, the sequence approximately
doubles when the index is a power of 2: between a3 = 8 and a4 = 10, between a7 = 18 and
a8 = 30, and between a15 = 48 and a16 = 90. These jumps become increasingly evident as the
index increases, since the character λ represents a correction; for instance, a16 = 2·a15−λ+1.

Definition 1.5. A Stanley sequence S(A) = (an) is regular if there exist constants λ, σ and
an independent Stanley sequence (a′n), having character λ, such that, for large enough k and
0 ≤ i < 2k,

• a2k−σ+i = a2k−σ + ai,
• a2k−σ = 2a2k−σ−1 − λ+ 1.

The sequence (a′n) is called the core of S(A) and the constant σ is the shift index. We
refer to λ as the character of (an) as well as of (a

′

n).

Example 1.6. The sequence S(0, 1, 4) is regular with core (a′n) = S(0), shift index σ = 0,
and character λ = 0.

S(0, 1, 4) = 0, 1, 4, 5, 11, 12, 14, 15, 31, 32, 34, 35, 40, 41, 43, 44, 89, . . .

Notice that the terms a4, a5, a6, a7 equal the terms a′0, a
′

1, a
′

2, a
′

3 of S(0), translated by 11.
Likewise, the terms a8 through a15 equal the terms a′0 through a′7 translated by 31. As with
an independent sequence, the sequence S(0, 1, 4) has jumps when the index is a power of 2,
for instance from 44 to 89. However, for some regular sequences, the shift index is nonzero,
which means that the jumps are shifted away from powers of 2. For instance, by removing 11
from the sequence S(0, 1, 4), while leaving all other terms unchanged, we obtain the sequence
S(0, 1, 4, 5, 12, 14, 15, 31), which is also regular and has shift index 1. In a sense, the term 11
is “unnecessary” in the Stanley sequence.

In this paper, we connect the asymptotic behavior of Type 1 Stanley sequences to their
properties under modular arithmetic. We show that every independent sequence is not
simply 3-free, but is also 3-free modulo a certain integer. This idea allows us to general-
ize independent sequences to modular sequences ; our definition of pseudomodular sequences
generalizes regular sequences in the same way. We describe modular Stanley sequences with
novel structure (Table 1), and in particular identify a beautiful class of Stanley sequences
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created by summing the subsets of other sequences. We call these sequences basic sequences,
since in some sense they generalize the notion of writing an integer in base 3.

Our results are organized as follows. In §2, we present modular Stanley sequences and
describe their structure (Theorem 2.4) and asymptotic behavior. In §3, we present pseudo-
modular sequences, which generalize the concept of regular sequences in the same way that
modular sequences generalize the concept of independent sequences. Theorem 3.3 shows
how to construct complicated pseudomodular Stanley sequences by translating parts of a
modular sequence.

In §4, we present basic sequences and show how to construct them (Theorem 4.4), using our
results for modular sequences. We also show how to construct modular sequences from basic
sequences (Theorem 4.6). In §5, we apply our previous results to the problem of constructing
Stanley sequences with arbitrarily large gaps between consecutive terms (Corollary 5.2),
partially addressing a question of Erdős et al [6]. In §6, we show how our results generalize
to p-free integer sequences. Finally, in §7, we discuss possible future directions of research
in this area, and pose several conjectures.

2. Modular sequences

In Rolnick’s definition [16] of independent Stanley sequences stated above in Definition
1.3, the Stanley sequence is constructed by repeatedly translating a set of 2k integers (the
integers less than the repeat factor). As we shall see, the condition that this set contain
2k integers is not essential and is merely due to the fact that this is the case for “simple”
Stanley sequences satisfying Type 1 growth. Essentially, the definition of a modular sequence
removes this condition. In Table 1, we will show examples of modular sequences which are
not independent (or regular).

Definition 2.1. Let A be a set of integers and x be an integer. We say that x is covered by
A if there exist y, z ∈ A such that z < y and 2y − z = x.

Suppose that N is a positive integer with A ⊆ {0, . . . , N − 1}. Then, we say that x is
covered by A modulo N if there exist y, z ∈ A with z < y such that 2y − z ≡ x (mod N).

Definition 2.2. Fix a positive integer N ≥ 1. Suppose there exists a set A ⊂ {0, . . . , N−1}
containing 0 such that A is 3-free modulo N and all x ∈ {0, . . . , N − 1}\A are covered by A
modulo N . Then, A is said to be a modular set modulo N and S(A) is said to be a modular
Stanley sequence modulo N .

Proposition 2.3. Suppose A is a finite subset of N0 and suppose S(A) is an independent
Stanley sequence with repeat factor ρ. Then S(A) is a modular Stanley sequence modulo 3ℓ ·ρ
for some integer ℓ ≥ 0.

Proof. Let ω(A) denote the largest integer that is neither in S(A) nor is covered by S(A).
Choose ℓ such that N := 3ℓ · ρ satisfies N − max (S(A) ∩ {0, 1, . . . , N − 1}) > ω(A) and
max (S(A) ∩ {0, 1, . . . , N − 1}) > ω(A). Let A′ = S(A) ∩ {0, 1, . . . , N − 1}. We know that
S(A′) = S(A). This is easy to see since max(A′) > ω(A) and A′ = S(A)∩ {0, 1, . . . , N − 1}.

We claim that every element x ∈ {0, 1, . . . , N −1}\A′ is covered by A′ modulo N . Clearly
if x is covered by A′, then x is covered by A′ modulo N . Note that x > ω(A) implies x is
covered by A′. Now suppose that x ≤ ω(A) and x is not covered by A′. Then, x+N 6∈ S(A′)
and x+N must be covered by S(A′). Hence, we have a 3-term arithmetic progression (3-AP)
of the form z < y < x+N , with z, y ∈ S(A′).
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First, suppose z ≥ N . Because S(A′) is independent with repeat factor ρ and N = 3ℓ · ρ,
we must have z = z′+N and y = y′+N where z′, y′ ∈ A′. Then x is covered by z′ < y′ < x,
a contradiction. Now, suppose z < N and y ≥ N . Then

x+N = 2y − x ≥ 2 ·N −max(A′) > N + ω(A) ≥ x+N,

again a contradiction. We conclude that y, z < N ; therefore y, z ∈ A′ and z < y cover x
modulo N .

It remains to show that A′ is 3-free modulo N . Suppose we have x, y, z ∈ A′ such that
2y − z ≡ x (mod N). Observe that −N < 2y − z < 2N . If 0 ≤ 2y − z < N , then z, y, x
would form a 3-AP in A′, a contradiction. If 2y − z < 0, then we have x = 2y − z + N
and therefore z, y + N, x + N form a 3-AP in S(A′), a contradiction. If 2y − z ≥ N , then
x = 2y − z −N , and therefore z, y, x+N form a 3-AP in S(A′), again a contradiction.

We conclude that S(A) is a modular Stanley sequence modulo N = 3ℓ · ρ. �

We now describe the structure of modular Stanley sequences, which generalizes a similar
result of Rolnick and Venkataramana [17, Proposition 2.2] for independent sequences. For
sets X, Y and constant c, we will use the notation X + Y to refer to the set {x + y | x ∈
X, y ∈ Y } and c ·X to refer to {cx | x ∈ X}.

Theorem 2.4. Suppose that A is a modular set modulo N , with N a positive integer.
(i) S(A) = A+N · S(0).
(ii) Pick α ∈ N such that gcd(α,N) = 1. Then

α · A+N · S(0)

is a modular Stanley sequence modulo 3ℓ ·N for some integer ℓ ≥ 0.

Example 2.5. Take A = {0, 1, 7, 8}, which is a modular set modulo 10. We have S(A) =
A + 10 · S(0). Picking α = 9, we may verify that 9 · A + 10 · S(0) is a modular Stanley
sequence and is in fact equal to

S(0, 9, 10, 19, 30, 39, 40, 49, 63, 72, 73, 82, 90, 93, 99).

This theorem immediately implies that every modular sequence S(A) follows Type 1
growth, because S(0) follows Type 1 growth. Also observe that the theorem implies that if
S(A) is a modular Stanley sequence modulo N , then it is also a modular Stanley sequence
modulo 3N .

Corollary 2.6. Every modular sequence follows Type 1 growth.

Proof of Theorem 2.4. We first show how part (i) follows from part (ii). For ℓ ∈ N, let
Sℓ denote the first 2ℓ elements of S(0), with maximum element (3ℓ − 1)/2, and let Aℓ :=
α · A + N · Sℓ. Pick ℓ large enough that max(Aℓ) ≤ 3ℓ ·N . We will prove part (ii) for this
choice of ℓ. Taking α = 1 and ℓ = 0 yields part (i).

We now prove part (ii); that is, Aℓ is a modular set modulo 3ℓ ·N . Let S = α ·A+N ·S(0).
First, we prove that S is 3-free. Suppose towards contradiction that there exists a 3-AP z, y, x
in S. Write x = αxA +Nx0, for xA ∈ A, x0 ∈ S(0), and define yA, zA, y0, z0 similarly. Then,
zA, yA, xA form a 3-AP modulo N , because gcd(α,N) = 1. Since A is 3-free modulo N , we
conclude that xA = yA = zA. Therefore, z0, y0, x0 must form a 3-AP, a contradiction since
S(0) is 3-free.
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Now pick x 6∈ S such that x ≥ 3ℓ ·N . We must show that x is covered by S. Let xA be the
unique element of {0, . . . , N − 1} such that x ≡ αxA (mod N). (Note that xA only exists
because gcd(α,N) = 1.) Define yA, zA, y0, z0 as follows.

If xA ∈ A, then set yA = zA = xA. Else, since A is a modular set modulo N , there exist
zA, yA ∈ A such that zA, yA, xA form a 3-AP. Now, define x0 by x = α(2yA − zA) + Nx0.
Note that the integer x0 is nonnegative, because x > max(α · A).

Now, if x0 ∈ S(0), set y0 = z0 = x0. Else, since S(0) is a Stanley sequence, there exist
z0, y0 ∈ A such that z0, y0, x0 form a 3-AP. Setting y = αyA +Ny0 and z = αzA +Nz0, we
see that y, z ∈ S and z, y, x form a 3-AP, completing our proof. �

In [16, Theorem 1.3], Rolnick introduces an operator ⊗, called the product, that combines
regular Stanley sequences to produce another regular Stanley sequence. We translate this
definition of ⊗ to modular sequences here. The proof is similar to the proofs of the preceding
theorem.

Proposition 2.7. Suppose that A and B are modular sets, modulo M and N respectively.
Let A⊗ B = A +M ·B. Then S(A⊗ B) is a modular Stanley sequence modulo MN .

Example 2.8. Set A = {0, 1, 7, 8}, which is a modular set modulo 10, and set B = {0, 2},
which is a modular set modulo 3. The set

A⊗ B = {0, 1, 7, 8, 20, 21, 27, 28}

is a modular set modulo 30.

Note that ⊗ is an associative operation on modular sequences. Namely, for A,B,C mod-
ular sets, modulo M,N, P , the set (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) is modular with modulus
MNP . Thus, the set of modular sets is a noncommutative monoid under the operation ⊗
and has identity {0}.

3. Pseudomodular sequences

A N |A|

0, 6, 13, 14, 16, 17, 27, 29, 30, 35, 36, 49, 50 61 13
0, 1, 3, 4, 9, 12, 26, 29, 34, 37, 50, 53, 60, 61 75 14

0, 5, 7, 8, 12, 13, 15, 20, 29, 36, 44, 55, 62, 63, 70 79 15
0, 7, 12, 16, 18, 23, 35, 41, 42, 53, 57, 62, 69, 74, 78, 80, 92 93 17

0, 11, 12, 16, 18, 19, 40, 46, 48, 57, 59, 65, 86, 87, 89, 93, 94, 105, 110, 120, 122 125 21
0, 11, 12, 23, 45, 56, 57, 68, 84, 95, 110, 116, 121, 127, 142, 153, 194, 673 63

207, 213, 218, 224, 226, 237, 265, 271, 276, 282, 297, 303, 308, 314, 355,
356, 366, 374, 375, 385, 386, 427, 433, 438, 444, 459, 465, 470, 476, 504,
515, 517, 523, 528, 534, 536, 547, 588, 599, 614, 620, 625, 631, 646, 657

Table 1. Modular sequences S(A) that are not independent, with their mod-
ulus N shown and the cardinality of the modular set A. Several of these
examples were found by modifying sequences on a website of Wroblewski [22].

Rolnick conjectured that all Stanley sequences following Type 1 growth are regular. The
modular sequences shown in Table 1 disprove this conjecture, since they are not independent
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(or regular). However, only a slight modification is necessary in Rolnick’s original definition
of independent and regular sequences to resurrect the conjecture: The period of such a
sequence need not in fact be a power of 2. We restate the definition of a modular sequence
in these terms.

Definition 3.1. A Stanley sequence S(A) = (an) is modular if there exist constants λ,m
such that for all k ≥ 0 and 0 ≤ i < m · 2k,

• am·2k+i = am·2k + ai,
• am·2k = 2am·2k−1 − λ+ 1.

We refer to λ as the character and am as the repeat factor, where m is assumed to be as
small as possible so that the above conditions are satisfied.

Just as the definition of a modular sequence is a slight modification of the definition of an
independent sequence, so we can modify the definition of a regular sequence to reflect that
the period need not be a power of 2.

Definition 3.2. A Stanley sequence S(A) = (an) is pseudomodular if there exist constants
λ,m and a modular Stanley sequence (a′n), having character λ, such that, for all k ≥ 0 and
0 ≤ i < 2k,

• am·2k−σ+i = am·2k−σ + ai,
• am·2k−σ = 2am·2k−σ−1 − λ+ 1.

We refer to the sequence (a′n) as the core of S(A) and the constant σ as the shift index.

It is easy to see that every regular Stanley sequence (according to Rolnick’s definition) is
pseudomodular, with m taken to be a power of 2. The statement and proof of Theorem 1.5
in [16] generalize naturally from regular sequences to pseudomodular sequences.

Theorem 3.3. Let S(A) = (an) be a modular Stanley sequence with character λ, shift index
σ, and repeat factor am. Pick k > 0 and c such that

λ ≤ c ≤ am·(2k−1) − λ.

Define

Ac
k :=

{

ai | 0 ≤ i < m · 2k − σ
}

∪
{

c+ ai | m · 2k − σ ≤ i < m · 2k+1 − σ
}

.

Then, Ac
k is 3-free and S(Ac

k) is a pseudomodular Stanley sequence with core S(Ak).

From Corollary 2.6, it is simple to show that all pseudomodular sequences follow Type 1
growth. We revise Rolnick’s conjecture as follows:

Conjecture 3.4. A Stanley sequence follows Type 1 growth if and only if it is pseudomodular.

4. Basic sequences

We have noted that the sequence S(0) consists of the sums of subsets of (1, 3, 9, 27, . . .).
We now introduce a class of modular Stanley sequences which generalize this behavior to
sequences other than the powers of 3.
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Definition 4.1. We say that a Stanley sequence S(A) = (an) is basic if there exists a
sequence B = (bk) and constant α ∈ N, such that (i) bk = α · 3k for k sufficiently large, and
(ii) the elements an correspond to sums of subsets of B, that is, we have

S(A) =
{

∑

δkbk | δk ∈ {0, 1} with δk 6= 0 for finitely many k
}

,

where these sums are all distinct. In this case, we say that B is the basis of S(A).

In a sense, the basis B of an basic Stanley sequence may be seen as a generalization of
the powers of 3. Instead of writing the elements of the sequence in base 3, we are able to
write them simply in “base B”. Just as S(0) consists of those integers with only digits 0, 1
in base 3, a basic sequence consists of those integers with only digits 0, 1 in base B. Thus
S(0) is basic with basis {1, 3, 9, . . .}.

Example 4.2. The sequence S(0, 1, 7) is basic with basis {1, 7, 10, 30, . . .}. We may rewrite
the first few terms of this sequence with reference to the basis, as follows:

S(0, 1, 7) = 0, 1, 7, 8, 10, 11, 17, 18, 30, 31, 37, 38, . . .

= 0, 1, 7, 7 + 1, 10, 10 + 1, 10 + 7, 10 + 7 + 1, 30, 30 + 1, 30 + 7, 30 + 7 + 1, . . .

Proposition 4.3. Every basic Stanley sequence is independent (and thus modular).

Proof. Suppose that S(A) is basic with basis B. For k large enough, bk = α · 3k; therefore,
for some κ and all k ≥ κ, we have

bk ≥
k−1
∑

i=0

bi.

Since the sum of each subset of {b0, b1, . . . , bk−1} is equal to a distinct element an of S(A),
and there are 2k such subsets, we conclude that a2k = bk = α · 3k and a2k+i = a2k + ai for
each 0 ≤ i < 2k. We conclude that S(A) is independent, as desired. �

Using our formulation of modular Stanley sequences, we prove the following theorem.

Theorem 4.4. The sequence B = (bk) is a valid basis, provided that (i) 3k is the largest
power of 3 dividing bk for each k, and (ii) bk = 3k for k large enough. Note that (bk) need
not be an increasing sequence for the first few values of k.

Example 4.5. The sequence S(0, 9, 11, 12, 20) is basic with basis {11, 12, 9, 27, . . .}.

S(0, 9, 11, 12, 20) = 0, 9, 11, 12, 20, 21, 23, 27, 32, 36, . . .

= 0, 9, 11, 12, 11 + 9, 12 + 9, 12 + 11, 27, 12 + 11 + 9, 27 + 9, . . .

Proof of Theorem 4.4. Suppose B = (bk) satisfies the given hypotheses. Let N = bm be large
enough that bk = 3k for all k ≥ m and

∑m−1
k=0 bk < N . Let

A :=

{

m−1
∑

k=0

δkbk | δk ∈ {0, 1}

}

.

Let S be the sequence of the sums of subsets of B. We will prove that S is a modular Stanley
sequence modulo N , for which it suffices to prove that A is a modular set modulo N .
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For each integer x ≥ 0, let ti(x) denote the ith digit of x in base 3. For each x ∈ A, let
δi(x) be the indicator for whether bi is in the subset of B which is summed to obtain x.
Note that ti(x) is determined uniquely by δ0(x), δ1(x), . . . , δi(x), since x is a sum of bk and
ti(bk) = 0 for all k > i.

We first show that A is 3-free modulo N . Suppose towards contradiction that x, y, z ∈ A
satisfy 2y − z ≡ x (mod N). Then, for each i, either {ti(x), ti(y), ti(z)} = {0, 1, 2} or
ti(x) = ti(y) = ti(z). It is impossible to have {t0(x), t0(y), t0(z)} = {0, 1, 2}, since the
digit t0(·) is determined solely by δ0(·) ∈ {0, 1}. Hence, t0(x) = t0(y) = t0(z) and so
δ0(x) = δ0(y) = δ0(z). Now, it is impossible to have {t1(x), t1(y), t1(z)} = {0, 1, 2}, since the
digit t1(·) is determined solely by δ0(·), δ1(·) ∈ {0, 1} and we know δ0(·) is identical for x, y, z.
Therefore, t1(x) = t1(y) = t1(z) and so δ1(x) = δ1(y) = δ1(z). Continuing in this way, we
conclude that all the digits of x, y, z are identical, and so x = y = z, a contradiction.

Now suppose that x 6∈ A with 0 ≤ x < N . We must show that x is covered by A modulo
N . We construct elements y, z ∈ A stepwise such that 2y − z ≡ x, in the following manner.
At step −1, we start out with y(−1) = z(−1) = 0 and x(−1) = 0. At step j, for j ≥ 0, we
create y(j), z(j) ∈ A from y(j−1), z(j−1) ∈ A so that x(j) := 2y(j) − z(j) agrees with x in the
digits t0(·), . . . , tj(·).

We assume recursively that t0(·), . . . , tj−1(·) have already been matched between x(j−1)

and x and that δj(y
(j−1)), δj(z

(j−1)) are both set to 0. In order to construct y(j) and z(j), we
set one, or both, or neither of δj(y

(j)), δj(z
(j)) to 1, while keeping all other δi(·) fixed.

In order to determine how to set δj(y
(j)), δj(z

(j)), consider tj(x
(j−1)). If tj(x

(j−1)) = 0,
then we set both to 0, since then tj(x

(j)) = 0. If tj(x
(j−1)) = 1, then we can set either of

δj(y
(j)), δj(z

(j)) to 1, while if tj(x
(j−1)) = 2, then we set both of δj(y

(j)), δj(z
(j)) to 1; this

again results in tj(x
(j)) = 0.

The important part of this recursive procedure is that at step j, when we fix the digit
tj(·), we do not change any of the other digits ti(·) for i < j. This is because we are adding
multiples of bj , and 3j | bj . We may affect some of the digits ti(·), for i > j; however, we fix
these digits later, up until step N , at which point x(j) matches x in the first N digits. Hence,
x(j) ≡ x (mod N). We have proven that x is covered by A modulo N , which completes our
proof. �

Combining the arguments in Theorem 2.4 and Theorem 4.4 yields the following theorem.

Theorem 4.6. Let A be a modular set modulo N , and choose α ∈ N such that gcd(α,N) = 1.
Suppose that B = (bk) satisfies (i) 3k is the largest power of 3 dividing bk for each k, and
(ii) bk = 3k for k large enough. Let SB denote the Stanley sequence generated from the basis
B. Then,

α · A+N · SB

is a modular sequence modulo 3ℓ ·N for all sufficiently large ℓ ∈ N.

Using the theory of basic sequences, we can prove a small result towards Rolnick’s Con-
jecture 5.1 [16]. Before recalling the conjecture, we first state a definition. Given a 3-free set
A with elements a0 < · · · < ak, define a completion of A to be a 3-free set A′ with elements
a0 < · · · < ak < · · · < am such that S(A′) is regular. For instance, {0, 4, 7} and {0, 4, 9} are
two completions of {0, 4}.

Conjecture 4.7 (Conjecture 5.1 in [16]). Every 3-free set has a completion.
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Proposition 4.8. Let a1 < · · · < an ∈ N such that ν3(ai) 6= ν3(aj) for i 6= j where 3ν3(·)

is the highest power of 3 dividing a number. Also suppose that a1 + a2 > an. Then the set
{0, a1, . . . , an} has a completion.

Proof. Let c ∈ N such that c > an and ν3(c) = 0. Then Theorem 4.4 implies that the follow-
ing set is a basis for an independent Stanley sequence beginning with the terms 0, a1, . . . , an :

{c · 3j | 3j < an, j 6= ν3(ai) for 1 ≤ i ≤ n} ∪ {a1, . . . , an} ∪ {3j : 3j > an}.

The condition a1 + a2 > an is necessary to ensure that the first n + 1 terms of the basic
sequence generated by the above basis are equal to 0, a1, . . . , an. �

This proposition clearly implies the following corollary.

Corollary 4.9. Let a < b ∈ N with ν3(a) 6= ν3(b), then the set {0, a, b} has a completion.

5. Stanley sequences with large gaps between consecutive terms

For arbitrary Stanley sequences S(A) = (an), the gaps an+1 − an between consecutive
elements grow on average, but small gaps do still occur even for large n. In [6, Prob-
lem 4, p. 126], the authors ask whether there exists a Stanley sequence (an) such that
lim infn→∞ (an+1 − an) = ∞. This is easily seen to be false for modular sequences, and we
believe it to be false for general Stanley sequences. We here prove the weaker statement that
there exist Stanley sequences (an) such that lim infn→∞ (an+1 − an) is arbitrarily large.

Proposition 5.1. For m a nonnegative integer, define

Am :=

{

∑

b∈B

b | B ⊆
m
⋃

i=0

{

2(2i · 29m−i), 6(2i · 29m−i), 11(2i · 29m−i)
}

}

.

Then Am is a modular set modulo 29m+1.

Proof. We proceed by induction on m.

Base case: m = 0
A routine computation shows that A0 = {0, 2, 6, 8, 11, 13, 17, 19} is 3-free modulo 29 and

covers all elements x ∈ {0, . . . , 28}\A0 modulo 29. Thus, A0 is a modular set modulo 29.

Induction step: Suppose Am is a modular set modulo 29m+1 and consider Am+1. First
we want to show that Am+1 ⊂ {0, . . . , 29m+2 − 1}. We can easily see that

Am+1 = 2m+1 · A0 + 29 · Am.

Hence,

max (Am+1) = max
(

2m+1 ·A0 + 29 · Am

)

= 2m+1 · 19 + 29 ·max(Am).

By recursion, this expression equals
m+1
∑

i=0

19 · 2i · 29m+1−i = 29m+1 · 19
m+1
∑

i=0

(

2

29

)i

< 29m+1 · 19
∞
∑

i=0

(

2

29

)i

= 29m+1 · 19 ·
29

27
< 29m+2.(5.1)

Therefore, Am+1 ⊂ {0, . . . , 29m+2 − 1}.
10



Now we will show that Am+1 is 3-free modulo 29m+2. If not, there exists a 3-AP z < y <
x ∈ Am+1 modulo 29m+2. Write x = 2m+1x0 + 29xm, for x0 ∈ A0 and xm ∈ Am, and define
y0, z0, ym, zm similarly. Since z, y, x form a 3-AP modulo 29m+2, we know that z0, y0, x0 form
a 3-AP modulo 29. Hence, x0 = y0 = z0 since A0 is 3-free modulo 29. We conclude that
zm, ym, xm is a 3-AP modulo 29m+1. Since Am is 3-free modulo 29m+1, this means that
xm = ym = zm, and thus that Am+1 is 3-free modulo 29m+2.

Now, we must show that every element x ∈ {0, . . . , 29m+2 − 1}\Am+1 is covered by Am+1

modulo 29m+2. Let x0 ∈ {0, 1, . . . , 28} be the unique value such that 2m+1x0 ≡ x (mod 29).
If x0 ∈ A0, set y0 = z0 = x0. If not, pick z0, y0 ∈ A0 that cover x0 modulo 29. Now, define
xm by x = 2m+1(2y0 − z0) + 29xm. If xm ∈ Am, then set ym = zm = xm. Else, we know
by our inductive hypothesis that we can pick zm, ym ∈ Am that cover xm modulo 29m+1.
Setting y = 2m+1y0 + 29ym and z = 2m+1z0 + 29zm, we observe that z, y ∈ Am+1 cover x
modulo 29m+2, completing our induction. �

Given a Stanley sequence S(A) = (an), we write gap(A) for lim infn→∞ (an+1 − an).

Corollary 5.2. The modular Stanley sequence S(Am) = (an) has gap(A) = 2m+1.

Proof. We again proceed by induction on m.
Base case: For m = 0, it is readily verified that we have

gap(0, 2, 6, 8, 11, 13, 17, 19) = 2.

Induction step: Suppose that we have gap(Am) = 2m+1. In order to prove that
gap(Am+1) = 2m+2, we need only show that every two consecutive terms of Am+1 ∪ {29m+2}
are separated by at least 2m+2.

Observe that Am+1 = 2 · Am + {0, 2 · 29m+1} + {0, 6 · 29m+1} + {0, 11 · 29m+1}. By
our inductive hypothesis, we have lim inf (2 · Am) = 2m+2. Therefore, the gaps between
consecutive elements of Am+1 ∪ {29m+2} are at least 2m+2 if the following conditions hold:

2 · 29m+1 −max (2 · Am) ≥ 2m+2,

6 · 29m+1 −max
(

2 · Am + {0, 2 · 29m+2}
)

≥ 2m+2,

11 · 29m+1 −max
(

2 ·Am + {0, 2 · 29m+1}+ {0, 6 · 29m+1}
)

≥ 2m+2,

29m+2 −max (Am+1) > 2m+2.

For the first condition, we use a recursive calculation similar to (5.1) to compute:

29m+1 −max (Am) ≥ 29m+1 −
19

27
· 29m+1 > 2m+1,

and thus 2 ·29m+1−max (2 · Am) ≥ 2m+2. The other conditions follow similarly. We conclude
that lim inf S(Am+1) = 2m+2, completing the induction. �

6. Generalization to p-free sequences

One can easily generalize the greedy algorithm studied by Odlyzko and Stanley to produce
p-free sequences where p > 2 is a prime.
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Definition 6.1. Let A = {a0, . . . , ak} be a p-free set of nonnegative integers satisfying
a0 < · · · < ak. We define the p-Stanley sequence S(A) = (an) generated by A recursively as
follows. If a0 < · · · < an have already been defined, then an+1 is the smallest positive integer
greater than an such that {a0, . . . , an, an+1} is p-free.

In this section, we will generalize the notion of modular Stanley sequences to modular p-
Stanley sequences. Throughout the rest of this section p will denote an odd prime. Though
one can certainly consider p-modular sets and sequences for p not prime, these sequences
will not have the regular structure given in Theorem 2.4.

Definition 6.2. Let A be a set of integers and x be an integer. We say that x is p-covered
by A if there exist x1 < · · · < xp−1 in A such that x1, . . . , xp−1, x form a p-term arithmetic
progression (p-AP).

Suppose that N is a positive integer with A ⊆ {0, . . . , N − 1}. Then, we say that an
element x is p-covered by A modulo N if there exists x1, . . . , xp−1 ∈ A with x1 < · · · < xp−1

such that x1, . . . , xp−1, x form a p-AP modulo N .

Definition 6.3. Fix a positive integer N ≥ 1. Suppose there exists a set A ⊂ {0, . . . , N−1}
containing 0 such that A is p-free modulo N and all x ∈ {0, . . . , N − 1}\A are p-covered by
A modulo N . Then A is said to be modular p-free set modulo N , and Sp(A) is said to be a
modular p-Stanley sequence modulo N .

Before we describe how the theory of modular Stanley sequences generalizes to the theory
of modular p-Stanley sequences, let us prove a well-known lemma. The existence of these
sequences provided motivation for Szekeres in his conjecture about the asymptotic behavior
of rp(n) in [7].

Lemma 6.4. Let p > 2 be a prime, then Sp(0) consists exactly of the integers x ≥ 0 such
that x contains only the “digits” {0, . . . , p− 2} in its base p expansion.

Proof. Let tpi (x) denote the ith digit in the base p expansion of x. Let

Sp = {x ≥ 0 : tpi (x) ∈ {0, . . . , p− 2} ∀ i} .

First we will show that Sp is p-free. Suppose towards contradiction that x0, . . . , xp−1 ∈ Sp

form a p-AP, where xp−1 is minimal. If tp0(x0) = . . . = tp0(xp−1), then
x0−t

p
0(x0)

p
, . . . ,

xp−1−t
p
0(xp−1)

p

is a p-AP in Sp with strictly smaller pth term, a contradiction. Hence, the tp0(xj) are not
identical. Therefore, the tp0(xj) must attain every value in {0, . . . , p− 1}, which contradicts
the fact tpi (xj) ∈ {0, . . . , p− 2} for all i and all j. Hence Sp is p-free.

Now, we will show that all elements x ∈ N\Sp are p-covered by Sp. Let x ∈ N\Sp. We
choose integers x0, . . . , xp−2 as follows. If tpi (x) 6= p − 1, then set tpi (xj) = tpi (x) for all
0 ≤ j ≤ p − 2. If tpi (x) = p − 1, then set tpi (xj) = j for all 0 ≤ j ≤ p − 2. Using this
construction it is easy to see that x0 < · · · < xp−2 < x is a p-AP. Thus, Sp(0) = Sp. �

It is simple to verify that Sp(0) is a modular p-Stanley sequence modulo 1. This leads us
to the following structure theorem for modular p-Stanley sequences.

Theorem 6.5. Fix a positive integer N ≥ 1 and suppose A ⊂ {0, . . . , N − 1} contains 0, is
p-free modulo N , and all x ∈ {0, . . . , N − 1}\A are p-covered by A modulo N . Then

Sp(A) = A +N · Sp(0).
12



More generally, if α ∈ N is such that gcd(α,N) = 1, then

α · A+N · S(0)

is a modular Stanley sequence modulo 3ℓ ·N for some integer ℓ ≥ 0.

Proof. The proof closely follows that of Theorem 2.4. �

Example 6.6. The 5-Stanley sequence S5(0, 3) is a modular sequence modulo 25. Note,
for instance, that the terms a16 through a31 equal the terms a0 through a15, translated by
a16 = 25.

S5(0, 3) = 0, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21,

25, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, . . .

Problem 6.7. Classify all m, as a function of p, such that Sp(0, m) is “well-behaved” (where
modular represents a good definition of well-behaved). For p = 3, Odlyzko and Stanley
conjectured that the only such m are 3n and 2 · 3n. For p = 5, our code suggests that the
possible values m ≤ 100 are as follows (written in base 5):

1, 3, 4, 10, 22, 23, 24, 30, 32, 33, 34, 40, 42, 43, 44,

100, 122, 124, 130, 132, 133, 134, 140, 142,

212, 213, 214, 220, 222, 223, 224, 230, 232, 233, 234, 240, 242, 243, 244,

300, 312, 313, 314, 320, 322, 323, 324, 330, 332, 333, 334, 340, 342, 343, 344.

We now generalize the concept of a basic Stanley sequence to p-Stanley sequences.

Definition 6.8. We say that an p-Stanley sequence Sp(A) = (an) is basic if there exists a
sequence B = (bk) and constant α ∈ N such that (i) bk = α · pk for k sufficiently large, and
(ii) the following property is satisfied:

Sp(A) =
{

∑

δkbk | δk ∈ {0, 1, . . . , p− 2} with δk 6= 0 for finitely many k
}

,

where these sums are all distinct. In this case, we say that B is the basis of Sp(A).

Observe that Sp(0) is basic with basis {1, p, p2, . . .}. We can create many more basic p-
Stanley sequences with the following theorem, which is proven in the manner of Theorem
4.4.

Theorem 6.9. The sequence B = (bk) is a valid basis, provided that (i) pk is the largest
power of p dividing bk for each k, and (ii) bk = pk for k large enough. Note that (bk) need
not be an increasing sequence for the first few values of k.

Example 6.10. The sequence (7, 5, 25, . . .) is a basis for the 5-Stanley sequence that starts
out:

(0, 5, 7, 10, 12, 14, 15, 17, 19, 21, 22, 24, 25, . . .)

(0, 5, 7, 2 · 5, 7 + 5, 2 · 7, 3 · 5, 7 + 2 · 5, 2 · 7 + 5, 3 · 7, 7 + 3 · 5, 2 · 7 + 2 · 5, 25, . . .).

Theorem 4.6 also generalizes naturally to the p-free setting.
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7. Future directions

The study of Stanley sequences has been marked by breakthrough results in which new
and unexpected forms of structure are shown to be possible. While most Stanley sequences
are disorderly and their behavior is a mystery, the simple sequence S(0) is the starting point
that shows that some beautiful structures are possible. Odlyzko and Stanley discovered
orderly sequences of the form S(0, 3n) and S(0, 2 · 3n), which Rolnick generalized in turn
with the discovery of independent and regular sequences. In this paper, we have extended
this definition in turn to the modular and pseudomodular sequences.

It is difficult to assess what novel structures may yet be discovered in Stanley sequences.
While we believe that modular and pseudomodular sequences comprise the totality of se-
quences with Type 1 growth, it is possible that some wholly new class of well-structured
Stanley sequences may be derived using fresh perspectives or greater computational power.
It is, for example, possible that there exists a Stanley sequence that is in some sense “denser”
than the sequence S(0). We make this notion explicit in the following conjecture.

Conjecture 7.1. Let S(0) = (sn). Then, there exists a modular sequence S(A) = (an), with
an < sn for all sufficiently large n.

Consider the modular sequence S(A) = (an) with

A = {0, 5, 7, 8, 12, 13, 15, 20, 29, 36, 44, 55, 62, 63, 70},

which we presented in Table 1. This sequence is modular with modulus 79, and it satisfies
an < sn for infinitely many n. (No examples of such a sequence were previously known, and
we know of no independent Stanley sequence which satisfies this property.) It appears to
be considerably more difficult, however, to identify a modular sequence for which an < sn is
always true for n large enough.

While independent Stanley sequences are modular, the cardinality of their modular set
is always a power of 2. A key insight of this paper is that modular sets can have other
cardinalities; this opens the way to general modular sequences. We now conjecture that, in
fact, every sufficiently large integer is the cardinality of some modular set.

Conjecture 7.2. There exists an n0 ∈ N such that for all n ≥ n0, there exists an integer
Nn ∈ N and a modular set An modulo Nn such that |An| = n.

Clearly there exist modular sets of cardinality n for all n = 2m where m ∈ N. More
generally, if there exists a modular set A of cardinality n, then we can use prefix subsequences
of S(A) to create modular sets of cardinality 2m·n for allm ∈ N. Also, if we have two modular
sets A1, A2 of cardinality n1, n2 respectively, then their product S1 ⊗ S2 is a modular set of
cardinality n1 · n2.

Finally, we expect that many properties of modular 3-Stanley sequences will generalize to
modular p-Stanley sequences. However, constructing p-Stanley sequences requires far more
computational power; the natural algorithm for constructing the first n terms takes time
O(np−1). Therefore, it becomes increasingly difficult to construct interesting examples of
p-Stanley sequences. We offer the following conjectures.

Conjecture 7.3. For any n ∈ N ∪ {0}, there exists a modular p-free set A such that

|A| 6= (p− 1)n.

14



The only resolved case of this conjecture is when p = 3, and examples of such modular
sets can be found in Table 1. The greedy algorithm easily produces modular p-free sets
with cardinality (p−1)n, but producing other modular p-free sets is harder. The only known
method to produce such a set is by exhaustive search. Of course, once one finds one such set,
producing others is easy. Just as in the 3-free case, we expect all sufficiently large integers
to appear as the cardinality of a modular p-free set. We state here the p-free generalizations
of Conjectures 7.1 and 7.2.

Conjecture 7.4. Let Sp(0) = (sn). Then, there exists a modular p-Stanley sequence Sp(A) =
(an) with an < sn for all sufficiently large n.

Conjecture 7.5. For every odd prime p there exists a natural number np such that for all
n ≥ np, there exists a modular p-free set A with |A| = n.
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