
THE DISTANCE TO A SQUAREFREE POLYNOMIAL OVER F2[x]

MICHAEL FILASETA AND RICHARD A. MOY

Abstract. In this paper, we examine how far a polynomial in F2[x] can be from a squarefree
polynomial. For any ε > 0, we prove that for any polynomial f(x) ∈ F2[x] with degree n,
there exists a squarefree polynomial g(x) ∈ F2[x] such that deg g ≤ n and L2(f − g) <
(lnn)2 ln(2)+ε (where L2 is a norm to be defined). As a consequence, the analagous result
holds for polynomials f(x) and g(x) in Z[x].

1. Introduction

In the 1960’s, Pál Turán (cf. [11]) posed the problem of determining whether there is an
absolute constant C such that for every polynomial f(x) =

∑n
j=0 ajx

j ∈ Z[x], there is a

polynomial g(x) =
∑n

j=0 bjx
j ∈ Z[x] irreducible over the rationals satisfying L(f − g) :=∑n

j=0 |bj − aj| ≤ C. It is currently known that the existence of such a C is connected to an

open problem on covering systems of the integers with distinct odd moduli [5, 11]; if one
allows g(x) to have degree > n, then one can take C = 3 [1, 12]; for all f(x) of degree ≤ 40
such a g(x) exists with C = 5 [7]; for the corresponding problem in F2[x], if C exists, then
C ≥ 4 [1]; and for the corresponding problem in Fp[x] with p an odd prime, if C exists, then
C ≥ 3 [6]. Other papers on this topic include [2, 7, 8, 9, 10]. In [6], a case is made for the
following conjecture.

Conjecture 1.1. For every f(x) ∈ Z[x] of degree n ≥ 1, there is an irreducible polynomial
g(x) ∈ Z[x] of degree at most n satisfying L(f − g) ≤ 2.

In [4], Dubickas and Sha investigated an interesting variant of this conjecture where they
asked how far a polynomial f(x) ∈ Z[x] can be from a squarefree polynomial, that is from a
polynomial in Z[x] not divisible by the square of an irreducible polynomial over Q.

Conjecture 1.2. For every f(x) ∈ Z[x] of degree n ≥ 0, there is a squarefree polynomial
g(x) ∈ Z[x] of degree at most n satisfying L(f − g) ≤ 2.

Among other nice results, Dubickas and Sha [4, Theorem 1.4] show that if g(x) is allowed to
have degree > n, then such a squarefree polynomial g(x) ∈ Z[x] exists satisfying L(f−g) ≤ 2.
They [4, Theorem 1.3] also show that for n ≥ 15, there are infinitely many polynomials
f(x) ∈ Z[x] of degree n such that if g(x) ∈ Z[x] is squarefree, then L(f − g) ≥ 2. We show
in the next section that this latter result extends to k-free polynomials.

Theorem 1.3. Let k be an integer ≥ 2. There exists a computable N0 = N0(k) such that
if n ≥ N0, then there are infinitely many polynomials f(x) ∈ Z[x] of degree n such that if
g(x) ∈ Z[x] is k-free, then L(f − g) ≥ 2.
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Our argument for Theorem 1.3 gives as a permissible value of N0 the number

N0 = k

2k∑
j=1

(pj − 1) + k + 1,

where p1, . . . , p2k are the first 2k primes. We expect much smaller N0 will suffice.
One can approach the above conjectures by investigating the analogous questions for

polynomials over finite fields. Indeed, this is done for Conjecture 1.1 in [2, 6, 7, 9, 10].

Definition 1.4. Let Fp be any finite field with p elements where p is a prime. For any
polynomial f(x) ∈ Fp[x], define its length Lp(f) by choosing each of its coefficients in the
interval (−p/2, p/2] and then summing their absolute values in Z.

Using this definition of distance in Fp[x], Dubickas and Sha [4, Question 6.2] asked the
following question.

Question 1.5. For any prime number p and any polynomial f(x) ∈ Fp[x], is there a square-
free polynomial g(x) ∈ Fp[x] of degree at most deg f satisfying Lp(f − g) ≤ 2?

In this paper, we will prove the following theorem.

Theorem 1.6. Fix ε > 0. Let f(x) ∈ F2[x] with deg f = n. If n is sufficiently large, then
there exists a squarefree polynomial g(x) ∈ F2[x] of degree n such that

L2(f − g) ≤ (lnn)2 ln(2)+ε.

In the next section, we justify the following consequence of Theorem 1.6.

Corollary 1.7. Fix ε > 0. Let f(x) ∈ Z[x] with deg f = n. If n is sufficiently large, then
there exists a squarefree polynomial g(x) ∈ Z[x] of degree n such that

L(f − g) ≤ (lnn)2 ln(2)+ε.

2. Proofs of Theorem 1.3 and Corollary 1.7

Before turning to our main result, we establish Theorem 1.3 and show that Corollary 1.7
is a consequence of Theorem 1.6.

Proof of Theorem 1.3. Fix a positive integer k. Let Φn(x) denote the nth cyclotomic poly-
nomial. For distinct positive integers m and n, Diederichsen [3] obtained the value of the
resultant Res(Φn(x),Φm(x)). For our purposes, we only use that this resultant is 1 in the
case that m and n are distinct primes. For monic polynomials f(x) and g(x), one can view
the |Res(f(x), g(x))| as the product of g(α) as α runs through the roots of f(x). It follows
that for distinct primes p and q, we have

Res(Φp(x)k,Φq(x)k) = ±1.

Furthermore, for any prime p, one can see that

Res(xk,Φp(x)k) = ±1.

Both of the above resultants hold with ±1 replaced by 1, but this is not important to us.
Let p1, p2, . . . , p2k be arbitrary distinct primes. Define

f0(x) = xk and fj(x) = Φpj(x)k for 1 ≤ j ≤ 2k.
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From the above, we have Res(fi(x), fj(x)) = ±1 for distinct i and j in {0, 1, . . . , 2k}. The
significance of this is that as a consequence each fi(x) has an inverse modulo fj(x) in Z[x].
Thus, a Chinese Remainder Theorem argument implies that for arbitrary aj(x) ∈ Z[x], there
is a g(x) ∈ Z[x] that satisfies

g(x) ≡ aj(x) (mod fj(x)), for all j ∈ {0, 1, . . . , 2k}.
We set

a0 = 0 and aj(x) = (−1)jxb(j−1)/2c for 1 ≤ j ≤ 2k.

Then g(x) above has the property that g(x)− (−1)jxb(j−1)/2c is divisible by fj(x) = Φpj(x)k

for 1 ≤ j ≤ 2k. Furthermore, for any ` ≥ k, the condition a0 = 0 implies g(x) and g(x)± x`
are divisible by xk. Taking N equal to the degree of

P (x) =
∏

1≤j≤2k

Φpj(x)k,

we can find g(x) as above of degree < N + k. Then for n ≥ N0 := N + k + 1 and arbitrary
integers a and b, the polynomial

F (x) = g(x) + xn−N−1P (x)(ax+ b)

of degree n has the property that if h(x) ∈ Z[x] and L(F − h) ≤ 1, then h(x) is divisible by
one of the fj(x) and, hence, not k-free. The role of the expression ax + b in the definition
of F (x) is to clarify that for a given n ≥ N0, there are infinitely many possibilities for F (x),
completing the proof of Theorem 1.3. �

Proof of Corollary 1.7 assuming Theorem 1.6. We consider ε > 0 and n sufficiently large.
Let f2(x) = f(x) if the leading coefficient of f(x) is odd; otherwise, let f2(x) = f(x) + xn.
Thus, in either case, f2(x) has degree n and an odd leading coefficient. Let f̄2(x) be a
0, 1-polynomial (a polynomial all of whose coefficients are 0 or 1) satisfying f̄2(x) ≡ f2(x)
(mod 2). By Theorem 1.6, there is a 0, 1-polynomial ḡ2(x), squarefree in F2[x], such that

L(f̄2 − ḡ2) = L2(f̄2 − ḡ2) < (lnn)2 ln(2)+ε/2.

Furthermore, ḡ2(x) has degree n and, hence, an odd leading coefficient of 1. Observe that
there is a g2(x) ∈ Z[x] with g2(x) ≡ ḡ2(x) (mod 2) and with each coefficient of f2(x)− g2(x)
in {0, 1}. In particular, g2(x) has degree n, and we see that

L(f − g2) ≤ 1 + L(f2 − g2) = 1 + L(f̄2 − ḡ2) ≤ 1 + (lnn)2 ln(2)+ε/2 ≤ (lnn)2 ln(2)+ε,

completing the proof. �

3. Preliminaries to Theorem 1.6

Unless stated otherwise, we restrict our attention to arithmetic over F2, the field with two
elements. In addition to the notation discussed in the previous section, we define the degree
of a 0 polynomial to be −∞ with the understanding that deg 0 = −∞ < degw for non-zero
w(x) ∈ F2[x].

Our approach to proving Theorems 1.6 relies on the following idea from [4]. If f(x) =∑n
i=0 aix

i ∈ F2[x] has degree n, then we define

fe(x) =

bn/2c∑
i=0

a2ix
i and fo(x) =

b(n−1)/2c∑
i=0

a2i+1x
i.
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Observe that f(x) = (fe(x))2 + x(fo(x))2. Further observe that f ′(x) = (fo(x))2. As noted
in [4, Lemma 5.1], we have the following lemma.

Lemma 3.1. Let f(x) ∈ F2[x] with degree at least 2. The polynomial f(x) is squarefree in
F2[x] if and only if gcd(fe(x), f0(x)) = 1. Moreover, any irreducible polynomial appearing as
a factor of f(x) to a multiplicity > 1 is a factor of the polynomial gcd(fe(x), fo(x)).

This lemma will be crucial to our result. Observe that Lemma 3.1 allows one to view a
polynomial f(x) ∈ F2[x] of degree n as an ordered pair of polynomials of degree at most
n/2. Finding a nearby squarefree polynomial of degree n is tantamount to finding a nearby
ordered pair of polynomials which have trivial gcd.

We also make use of the following result.

Lemma 3.2. Let n ∈ Z+, and let p be a prime. The degree of the product of the monic
irreducible polynomials of degree ≤ n in Fp[x] is less than or equal to p(pn − 1)/(p− 1).

Proof. Every irreducible polynomial in Fp[x] of degree n divides xp
n − x. Hence, the degree

of the product of the monic irreducible polynomials of degree n is less than or equal to pn.
Since p+ p2 + · · ·+ pn = p(pn − 1)/(p− 1), the result follows. �

Next, we bound the minimum distance between a polynomial f and a multiple of a poly-
nomial d.

Lemma 3.3. Let f(x), d(x) ∈ F2[x] with deg d > 0. There exists a polynomial g(x) ∈ F2[x]
of degree at most deg f such that d(x)|g(x) and L2(f − g) ≤ deg d. Furthermore, if also
deg d ≤ deg f , then one can take deg g = deg f .

Proof. There exist polynomials q(x), r(x) ∈ F2[x] such that f(x) = d(x)q(x) + r(x), deg r <
deg d, and deg(d(x)q(x)) ≤ deg f , with equality if deg d ≤ deg f . Since

L2(f(x)− d(x)q(x)) ≤ deg d,

we can take g(x) = d(x)q(x) to complete the proof. �

By taking g(x) = d(x)q(x) + 1 in the argument above, we obtain the following.

Lemma 3.4. Let f(x), d(x) ∈ F2[x] with f(x) non-zero and deg d > 0. There exists a
polynomial g(x) ∈ F2[x] of degree at most deg f such that gcd(d, g) = 1 and L2(f−g) ≤ deg d.
Furthermore, if also deg d ≤ deg f , then one can take deg g = deg f .

Here is another lemma that will prove useful later.

Lemma 3.5. For t a positive integer, set Π1 =
∏t

i=1 (xi + 1) ∈ F2[x], and let Π̃1 be the

product of the distinct irreducible polynomials dividing Π1. The degree of Π̃1 is ≤ dt/2e2 −
dt/2e+ 1.
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Proof. Each factor xi + 1 in Π1 is divisible by x+ 1. Furthermore, if i is even, then xi + 1 =
(xi/2 + 1)2 and thus does not contribute new irreducible factors to Π̃1. In other words,

deg
(
Π̃1

)
≤ 1 + deg

dt/2e∏
i=1

x2i−1 + 1

x+ 1


= 1 + 2 + 4 + 6 + · · ·+ (2dt/2e − 2)

= 1 + 2
(
1 + 2 + 3 + · · ·+ (dt/2e − 1)

)
= 1 +

(⌈ t
2

⌉
− 1

)⌈ t
2

⌉
,

from which the lemma follows. �

We immediately have the following corollary.

Corollary 3.6. Let t be an integer ≥ 2. Set Π2 = x
∏t

i=1 (xi + xi−1 + · · ·+ x+ 1) ∈ F2[x],

and let Π̃2 be the product of the distinct irreducible polynomials dividing Π2. The degree of
Π̃2 is ≤ d(t+ 1)/2e2.

4. A proof of Theorem 1.6

To prove Theorem 1.6, we begin with a few technical lemmas.

Lemma 4.1. Fix ε ∈ (0, 1), and let n be a positive integer ≥ n0(ε) where n0(ε) is sufficiently
large. Set t = d2 ln(log2 n)/(1 − ε)e ∈ N. Let Π2 be as in Corollary 3.6. Let f(x) ∈ F2[x]
with gcd(f(x),Π2) = 1 and deg f ≤ n. Set

P (x) = Pε(x) =
∏

p(x)∈F2[x] irreducible

deg p≤t
p(x)-f(x)

p(x).

Then the polynomials in the collection

{f(x) + a(x)P (x)}, where a(x) ∈ {1, x+ 1, x2 + x+ 1, . . . , xt + xt−1 + · · ·+ x+ 1},

have no irreducible factors of degree ≤ t. Furthermore, the polynomials in this collection are
pairwise coprime.

Proof. Let p(x) be an irreducible polynomial of degree ≤ t. Then p(x)|f(x) or p(x)|P (x),
but not both. If p(x)|P (x), then p(x) - f(x) so that p(x) -

(
f(x) + a(x)P (x)

)
. If p(x)|f(x)

then p(x) - P (x). In this case, since p(x)|f(x) and gcd(f(x),Π2) = 1, we deduce that
gcd(p(x), a(x)) = 1. Therefore, p(x) -

(
f(x) +a(x)P (x)

)
. Thus, the polynomials of the form

f(x) + a(x)P (x), as defined above, have no irreducible factors of degree ≤ t.
We deduce then that the polynomials of the form f(x) + a(x)P (x) are pairwise relatively

prime since they have no irreducible factors of degree less than or equal to t and the difference
of any two distinct f(x)+a(x)P (x) is divisible only by irreducible polynomials of degree less
than or equal to t. �
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Lemma 4.2. Fix ε ∈ (0, 1), and let n be a positive integer ≥ n0(ε) where n0(ε) is sufficiently
large. Let t = d2 ln(log2 n)/(1 − ε)e ∈ N. Suppose that f0(x), f1(x), . . . , ft(x) ∈ F2[x] are
polynomials of degree ≤ n which are also pairwise relatively prime and have no irreducible
factors of degree ≤ t. If g(x) ∈ F2[x] has degree ≤ n, then there exists a polynomial g1(x) ∈
F2[x] with deg g1 ≤ n such that L2(g−g1) ≤ log2 n and, for some i ∈ {0, 1, 2, . . . , t}, we have
gcd(g1, fi) = 1. Furthermore, if deg g ≥ log2 n, then we may take deg g1 = deg g.

Proof. We proceed by adjusting the coefficients of g(x) in the terms of degree < log2 n to
produce the desired g1(x). Observe that there are at least 2log2 n = n such possibilities
for g1(x). Furthermore, if deg g ≥ log2 n, then each such g1(x) satisfies deg g1 = deg g.
We examine the possible irreducible polynomials w(x) which can divide gcd(g1, fi). By the
assumptions on the fi(x), we see that degw > t.

We consider now two cases depending on whether (i) t < degw ≤ log2 n or (ii) degw >
log2 n. After considering both cases, we combine information from the two cases to obtain
the desired result.

Case (i): Let d = degw. For each fixed choice of the coefficients, say aj ∈ {0, 1}, of xj in
g1(x) for j ∈ {d, d+1, . . . , blog2 nc}, there is at most one choice of the coefficients aj ∈ {0, 1}
of xj in g1(x) for j ∈ {0, 1, . . . , d−1} such that g1(x) is divisible by w(x). Thus, such a w(x)
divides at most 2(log2 n)−d+1 possibilities for g1(x).

Since every irreducible polynomial in F2[x] of degree d divides x2
d − x, there are at most

2d/d irreducible polynomials of degree d in F2[x]. Therefore, there are at most

2d

d
× 2(log2 n)−d+1 =

2n

d
possibilities for g1(x) that are divisible by an irreducible polynomial of degree d. By summing
over d in the range (t, log2 n], we deduce that there are at most∑

t<d≤log2 n

2n

d
≤ 2n

(
ln(log2 n)− ln(t) +O

(
1

t

))
≤ 2n ln(log2 n)

possibilities for g1(x) having an irreducible factor w(x) as in (i). As this estimate is > n, we
need to revise this estimate. We explain next how to reduce the above estimate by a factor
of t+ 1.

Recall that we are wanting gcd(g1, fi) = 1 for some i ∈ {0, 1, 2, . . . , t} rather than for every
such i. We choose the i ∈ {0, 1, 2, . . . , t} that minimizes the number of possibilities for g1(x)
which are divisible by an irreducible w(x) ∈ F2[x] with degw ∈

(
t, log2 n

]
and w(x)|fi(x).

Since the fj(x) are pairwise relatively prime, we deduce that the number of possibilities for
g1(x) with gcd(g1, fi) divisible by an irreducible w(x) ∈ F2[x] of degree d ∈

(
t, log2 n

]
is at

most
1

t+ 1

∑
t<d≤log2 n

2n

d
≤ 2n ln(log2 n)

t+ 1
≤ (1− ε)n.

We proceed now to Case (ii) with this choice of i.
Case (ii): In this case, we use that an irreducible polynomial with degree > log2 n can

divide at most one possibility for g1(x). With i as in Case (i), we see that fi(x) can have at
most n/log2 n distinct irreducible factors of degree greater than log2 n. Therefore, at most
n/log2 n possibilities for g1(x) have an irreducible factor of degree greater than log2 n in
common with fi(x).
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By combining our estimates from Case (i) and (ii), we deduce that there is some fi(x)
such that there are at most

(1− ε)n+
n

log2 n

possibilities for g1(x) that share a non-constant factor with fi. Therefore, with n ≥ n0(ε),
there exists a g1(x) ∈ F2[x] with deg g1 ≤ n such that L2(g− g1) ≤ log2 n and gcd(g1, fi) = 1
for some i ∈ {0, 1, . . . , t}. �

Now we proceed with the proof of Theorem 1.6.

Proof of Theorem 1.6. We take n sufficiently large as stated in the theorem, and set ε′ =
ε/(ε + 4 ln 2). Let t = d2 ln(log2 n)/(1 − ε′)e ∈ N, and let Π2 be as in Corollary 3.6. From
Corollary 3.6, we see that deg(Π̃2) ≤ d(t+1)/2e2. We apply Lemma 3.4 using the polynomials

fe(x) and Π̃2 to deduce that there exists f̃(x) with deg f̃ ≤ bn/2c and gcd(f̃(x),Π2) = 1
such that

L2(fe − f̃) ≤ d(t+ 1)/2e2.
Furthermore, if deg fe ≥ d(t+ 1)/2e2, we can take deg f̃ = deg fe and do so. Define P (x) =

Pε′(x) as in Lemma 4.1. By this lemma, the polynomials in {f̃(x) + a(x)P (x)}, where
a(x) ∈ {1, x + 1, x2 + x + 1, . . . , xt + xt−1 + · · · + x + 1}, have no irreducible factors of
degree ≤ t. Furthermore, the polynomials in this collection are pairwise coprime. For
i ∈ {0, 1, . . . , t}, set f̃i = f̃ + (xi + xi−1 + · · ·+ x+ 1)P (x). Since f̃i has no irreducible factor

of degree ≤ t, we have in particular that f̃i(0) 6= 0. From Lemma 3.2, we see that

L2(f̃ − f̃i) ≤ deg(f̃ − f̃i) ≤ t+ 2
(
2t − 1

)
< t+ 4(log2 n)2 ln(2)+ε/2, for 0 ≤ i ≤ t.

By Lemma 4.2, there is a polynomial g̃1(x) with deg g̃1 ≤ b(n−1)/2c such that L2(g̃1−fo) ≤
log2 n and gcd(g̃1, fi) = 1 for some i ∈ {0, 1, . . . , t}. Furthermore, we take as we can

deg g̃1 = deg fo if deg f0 ≥ log2 n. With i so fixed, we set g(x) = f̃i(x)2 + xg̃1(x)2. Observe
that deg g ≤ n and g(x) is squarefree by Lemma 3.1. The condition deg f = n implies
that deg fi = deg fe or deg g̃1 = deg fo with both holding if deg fe and deg fo are both
≥ max{log2 n, d(t+ 1)/2e2}. This implies deg g = deg f = n. The estimate

L2(f − g) = L2(f̃
2
i − f 2

e ) + L2(g̃
2
1 − f 2

o )

= L2(f̃i − fe) + L2(g̃1 − fo)

≤ L2(fe − f̃) + L2(f̃ − f̃i) + L2(g̃1 − fo)

≤
⌈t+ 1

2

⌉2
+ t+ 4(log2 n)2 ln(2)+ε/2 + log2 n < (lnn)2 ln(2)+ε

completes the proof of the theorem. �
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