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Abstract

A dessin d’enfant, or dessin, is a bicolored graph embedded into a Riemann surface, and
the monodromy group is an algebraic invariant of the dessin generated by rotations of edges
about black and white vertices. A rational billiards surface is a two dimensional surface that
allows one to view the path of a billiards ball as a continuous path. In this paper, we classify
the monodromy groups of dessins associated to rational triangular billiards surfaces.

Introduction

A rational billiards surface is a two dimensional surface that allows one to view the path of a
billiards ball as a continuous path instead of a jagged path obtained from numerous bounces
off the sides of a billiards table. As one changes the shape of the billiards table, one obtains
different billiards surfaces. In [4], the authors studied the Cayley graph associated to billiards
surfaces obtained from rational triangular billiards tables. In this project, we propose modifying
their approach by classifying the monodromy groups of dessins d’enfant drawn on these billiards
surfaces. In particular, we prove these groups are semi-direct products of abelian groups.

Background

Billiard Surfaces

A basic definition of a billiards surface is a Riemann surface constructed from a polygon with angles
in radians that are rational multiples of π [3]. A billiards surface is a topological construction that
allows one to view the path of a billiards ball as a continuous path on a surface instead of a chaotic
path of bounces off the sides of the billiards table. This concept is best illustrated via a picture
involving the billiards surface associated with the rectangle. One constructs the billiards surface
by beginning with one copy of the rectangle and then reflecting it a certain number of times as
pictured below. This is referred to as unfolding the path.
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Once one has enough copies of the initial polygon, one identifies edges in the surface that are
parallel and have the same orientation. In essence, this amounts to gluing together pairs of sides
of our diagram. Here is an example of how edges are identified in the billiards surface for the
equilateral right triangle.

One obtains the following 1-torus after gluing together the opposite sides of the larger rectangle.

In fact, all billiards surfaces are tori with one or more holes [5].

Graphs on Surfaces

As studied in [4], one may construct a graph on the billiards surface. The Cayley graph of a
billiards surface is the graph obtained by placing a vertex at the center of each polygon and edges
are drawn between vertices if their corresponding polygons are adjacent. An example of the Cayley
graph of the billiards surface corresponding to the 3π

10 ,
3π
10 ,

4π
10 triangle is shown below.
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A billiards surface can have arbitrarily large genus. However, the genus of the Cayley graph of
a triangular billiards surface is always zero or one [4]!

Although the Cayley graphs are an interesting object to study, they lose some of the geometric
information of the original billiards surface as evidenced by the fact that the genus of the Cayley
graph of a triangular billiards surface is at most one. In order to create a graph that preserves
more of the structure of the billiards surface, we introduce the notion of a dessin d’enfant.

A dessin d’enfant, or simply dessin, is a connected bicolored (e.g. the vertices are one of two
colors) graph equipped with a cyclic ordering of the edges (oriented counterclockwise) around each
vertex [2]. In the case of the Cayley graph, one can rearrange the order of the edges coming out of
a vertex without changing the graph. However, this is not allowed in the case of dessins d’enfant.

One important algebraic invariant of a dessin d’enfant is its monodromy group. If we have a
dessin and we label the n edges with the numbers 1, 2, . . . , n, we can associate the dessin with a
pair of permutations σ0, σ1 ∈ Sn, the symmetric group such that the cycles of σ0 correspond to
the cyclic ordering (read counterclockwise) of the edges around the black vertices and the cycles
of σ1 correspond to the ordering (read counterclockwise) of the edges around the white vertices.
The monodromy group of a dessin with n edges is 〈σ0, σ1〉, the group generated by σ0, σ1 ∈ Sn.

For example, see the dessin below, where we have a bicolored graph whose edges are labeled
1, 2, . . . , 9 inducing a pair of permutations σ0 = (1, 2, 3)(4, 9, 8)(5, 6, 7), σ1 = (3, 4, 5)(1, 9, 6)(2, 8, 7) ∈
S9 associated with the black and white vertices, respectively. The monodromy group of this dessin
is isomorphic to C3 × C3, where C3 is the cyclic group of size 3.

Dessin on Triangular Billiards Surfaces

In this paper, we examine the dessin that gets drawn on a triangular rational billiard surface.
Each angle of these triangles is a rational multiple of π [1]. To denote each triangle, we use
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the triple notation (p0, p1, p2) where p0, p1, p2 ∈ N. To retrieve the angles of a triangle, use
(θ0, θ1, θ2) = (p0πn , p1πn , p2πn ) where n = p0 + p1 + p2 (e.g. the triple (1, 1, 1) represents the triangle
with angles (π3 ,

π
3 ,

π
3 ), or the equilateral triangle). Note that if gcd(p0, p1, p2) = k 6= 1, the triple

can be reduced to (p0, p1, p2) = (p0k ,
p1
k ,

p2
k ). Therefore, we will only consider triples in their most

reduced form, writing T (p0, p1, p2) for the rational triangle and X(p0, p1, p2) for its corresponding
billiards surface.

The number of copies of T (p0, p1, p2) needed to form X(p0, p1, p2) is 2n [1]. A natural way
of drawing the dessin on this billiard surface is drawing the black vertices on the copies with the
same orientation as the original triangle and the white vertices on the copies with the opposite
orientation. The edges are then drawn between two vertices if their corresponding triangles share an
edge. We write D(p0, p1, p2) for the dessin drawn on the billiards surface X(p0, p1, p2). From these
conditions for drawing the dessin on a triangular rational billiard surface, some basic properties
can be stated:

1. D(p0, p1, p2) will have n white vertices and n black vertices.

2. Each vertex in D(p0, p1, p2) has degree 3.

3. D(p0, p1, p2) will have 3n edges.

Write each of the permutations σ0 and σ1 as a product of disjoint cycles. The cycles of σ0
correspond to the cyclic ordering of the black vertices while the cycles of σ1 correspond to the
cyclic ordering of the white vertices. One can easily derive the following properties of σ0 and σ1:

1. |〈σ0〉| = |〈σ1〉| = 3

2. The permutations σ0 and σ1 can each be written as a product of disjoint n 3-cycles.

Results

The main goal of this section is the classification of all monodromy groups corresponding to trian-
gular billiards surfaces, as stated in the following theorem.

Theorem 1. Fix p0, p1, p2 ∈ N with gcd(p0, p1, p2) = 1. Let G = 〈σ0, σ1〉 be the monodromy
group of the dessin D(p0, p1, p2) drawn on the triangular billiards surface X(p0, p1, p2). Setting
N = 〈σ0σ1, σ1σ0〉 and H = 〈σ0〉, we have G = N o H. Furthermore, if n = p0 + p1 + p2 and
α = gcd(n, p0p1 − p22), then

G ∼= (Cn × Cn
α

) o C3.

Notation

The billiards surface of a triangle is generated using reflections. Fix a triangle with a black vertex
and label its vertex 0. Up to translation, half of the triangles (which have black vertices) of the
billiards surface will be rotations of this fixed triangle while the other half (which have white
vertices) will be reflections of those rotations. A useful way of labeling an edge on the dessin is
in reference to the unique black vertex it is connected to. The black vertex labeled m will be
associated with the triangle rotated 2mπ

n radians counter clockwise from the starting triangle. An
example of this system for labeling the vertices is provided below:
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Label each side of a triangle si where θi is the angle opposite of that side. Label each edge
(m, i) where m is the black vertex incident to the edge and si is the side of the triangle through
which the edge passes. For this notation system, it is important that the angles (θ0, θ1, θ2) of a
triangle with a black vertex are ordered counterclockwise.

The monodromy group acts on the set of edges according to the following formulas:

σ0[(m, i)] =


(m, 1) if i = 0

(m, 2) if i = 1

(m, 0) if i = 2

σ1[(m, i)] =


(m− p1, 2) if i = 0

(m− p2, 0) if i = 1

(m− p0, 1) if i = 2

(1)

Lemma 1. The permutations σ0σ1 and σ1σ0 commute.

Proof. Using (1), the permutations σ0σ1 and σ1σ0 can be computed to be the following:

σ0σ1[(m, i)] =


(m− p1, 0) if i = 0

(m− p2, 1) if i = 1

(m− p0, 2) if i = 2

σ1σ0[(m, i)] =


(m− p2, 0) if i = 0

(m− p0, 1) if i = 1

(m− p1, 2) if i = 2

(2)

Furthermore, we compute

(σ0σ1)(σ1σ0)[(m, i)] =


(m− p2 − p1, 0) if i = 0

(m− p0 − p2, 1) if i = 1

(m− p1 − p0, 2) if i = 2

=


(m+ p0, 0) if i = 0

(m+ p1, 1) if i = 1

(m+ p2, 2) if i = 2

(σ1σ0)(σ0σ1)[(m, i)] =


(m− p1 − p2, 0) if i = 0

(m− p2 − p0, 1) if i = 1

(m− p0 − p1, 2) if i = 2

=


(m+ p0, 0) if i = 0

(m+ p1, 1) if i = 1

(m+ p2, 2) if i = 2

demonstrating that σ0σ1 and σ1σ0 commute.

Lemma 2. Given a triple (p0, p1, p2) and n = p0 +p1 +p2, then p0p1−p22 ≡ p0p2−p21 ≡ p1p2−p20
(mod n).
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Proof. Since p2 ≡ −p0 − p1 (mod n),

p0p1 − p22 ≡ p0p1 − (−p0 − p1)2 = p0p1 − 2p0p1 − p20 − p21 =

−p0p1 − p20 − p21 = p0(−p1 − p0)− p21 ≡ p0p2 − p21 (mod n).

The other congruence is proven similarly.

Lemma 3. Let α = gcd(n, p0p1 − p22). Then |〈σ0σ1, σ1σ0〉| = n2

α .

Proof. We define a homomorphism ϕ : 〈σ0σ1, σ1σ0〉 → (Z/nZ)3, where (Z/nZ)3 is a Z/nZ module
viewed as a group, by ϕ(σ0σ1) 7→ v1 and ϕ(σ1σ0) 7→ v2 where

v1 = −

p1p2
p0

 , v2 = −

p2p0
p1

 .
We claim that ϕ is injective. To show that this fact, suppose that two elements in the codomain

are equal. That is, for (σ0σ1)k1(σ1σ0)k2 and (σ0σ1)l1(σ1σ0)l2 in the domain for some k1, k2, l1, l2 ∈
Z/nZ

k1v1 + k2v2 = l1v1 + l2v2.

This gives the list of equalities

k1(−p1) + k2(−p2) = l1(−p1) + l2(−p2)

k1(−p2) + k2(−p0) = l1(−p2) + l2(−p0)

k1(−p0) + k2(−p1) = l1(−p0) + l2(−p1).

Using (2), one confirms that

(σ0σ1)k1(σ1σ0)k2 = (σ0σ1)l1(σ1σ0)l2

which shows that ϕ is injective. Thus, 〈σ0σ1, σ1σ0〉 maps bijectively onto Span{v1, v2}.
Therefore, finding the order of Span{v1, v2} will also give the order of 〈σ0σ1, σ1σ0〉. We will

proceed using row reduction on [−v1 −v2]. First, recall that gcd(p0, p1, p2) = 1 and p0+p1+p2 = n.
This implies that gcd(p1, p2, n) = 1, since a number that divides p1, p2, and n will also divide p0.
Thus there exist s, t, u ∈ Z such that sp1 + tp2 + un = 1 and as a consequence sp1 + tp2 ≡ 1
(mod n).

Observe  1 0 0
−(sp2 + tp0) 1 0
−(sp0 + tp1) 0 1

p1 p2
p2 p0
p0 p1

[s −p2
t p1

]
=

1 0
0 p0p1 − p22
0 p21 − p0p2


where

det

 1 0 0
−(sp2 + tp0) 1 0
−(sp0 + tp1) 0 1

 = det

([
s −p2
t p1

])
= 1.

Recall by Lemma 2 that p0p2 − p21 ≡ p0p1 − p22 (mod n). Then this row reduced matrix is
equivalent to 1 0

0 p0p1 − p22
0 −(p0p1 − p22)

 .
Thus, |Span{v1, v2}| = n · nα where α = gcd(n, p0p1 − p22). As a result, |〈σ0σ1, σ1σ0〉| = n2

α .

Lemma 4. N is a normal subgroup of G.

Proof. Since N = 〈σ0σ1, σ1σ0〉 and G = 〈σ0, σ1〉, proving N C G is equivalent to proving the
following four statements:

• σ0(σ1σ0)σ−1
0 ∈ N

• σ1(σ0σ1)σ−1
1 ∈ N
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• σ0(σ0σ1)σ−1
0 ∈ N

• σ1(σ1σ0)σ−1
1 ∈ N

The first two statements are easy to show. To prove the third statement, observe that σ−1
0 = σ2

0

and σ−1
1 = σ2

1 . Thus,

σ0(σ0σ1)σ−1
0 = σ2

0σ1σ
2
0 = (σ2

0σ
2
1)(σ2

1σ
2
0) = (σ1σ0)−1(σ0σ1)−1 ∈ N.

The proof of the fourth statement is similar.

Lemma 5. N ∩H = {id}

Proof. Recall that N = 〈σ0σ1, σ1σ0〉 and H = 〈σ0〉. Suppose the intersection of these groups is
not trivial. Then there is an element in N that is equal to σ0 or σ−1

0 which implies that H ⊂ N .
Then the following should also be true:

σ1σ0σ
−1
0 = σ1 ∈ N

Then the group N = 〈σ0, σ1〉 = G. Since N is abelian by Lemma 1, the elements σ0 and σ1 must
commute. By examining the proof of Lemma 1, we observe that σ0 and σ1 commute only when
p0 ≡ p1 ≡ p2 (mod n). This only occurs when p0 = p1 = p2 = 1. In this case, one observes that
N = 〈σ0σ1, σ1σ0〉 = 〈σ0σ1〉 since σ0σ1 = σ1σ0. Therefore, either σ0σ1 = σ0 or (σ0σ1)2 = σ0 since
|σ0σ1| = 3. If σ0σ1 = σ0 then σ1 = id, a contradiction. If (σ0σ1)2 = σ0, then σ0 = σ1 which is also
a contradiction. Hence, N ∩H = {id}.

Lemma 6. NH = G

Proof. Recall that N = 〈σ0σ1, σ1σ0〉, H = 〈σ0〉, and G = 〈σ0, σ1〉. To show that σ0 ∈ NH, choose
n = id ∈ N and h = σ0 ∈ H. Then nh = σ0 ∈ NH. To show that σ1 ∈ NH, choose n = σ1σ0 ∈ N
and h = σ−1

0 ∈ H. Then nh = σ1 ∈ NH. The generators of G are in NH, so NH = G.

Proof of Theorem 1.

The group G is a semi direct product of subgroups N and H if and only if the three conditions are
true:

I. N CG

II. N ∩H = {id}

III. NH = G

Conditions I, II, and III are satisfied by Lemmas 4, 5, and 6 respectively. Therefore, G is a semi
direct product of subgroups N and H.

Future Directions

In future research, we plan on investigating the monodromy groups of dessins d’enfant associated
to rational billiards surfaces created by polygons with more than three sides.
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