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Abstract

A dessin d’enfant, or dessin, is a bicolored graph embedded into a Riemann surface, and the
monodromy group is an algebraic invariant of the dessin generated by rotations of edges about
black and white vertices. A rational polygonal billiards surface is a Riemann surface that arises
from the dynamical system of billiards within a rational-angled polygon. In this paper, we
compute the monodromy groups of dessins embedded into rational polygonal billiards surfaces
and identify all possible monodromy groups arising from rational triangular billiards surfaces.

1 Introduction

In [11], the authors investigated the connection between rational triangular billiards surfaces and
Cayley graphs. In [9], the authors modified this approach by drawing dessins d’enfant on the
rational triangular billiards surfaces and classifying their monodromy groups. In this paper, we
generalize the main result in [9] by computing the monodromy groups of dessins d’enfant drawn
on billiard surfaces of k-gons with k ≥ 3.

We show that all such monodromy groups can be expressed as the semidirect product N ⋊Ck,
where N is isomorphic to the column span of a circulant matrix over Z/nZ for an appropriate
integer n (Theorem 1 and Lemma 7) and Ck is the cyclic group of order k.

In Section 4, we show how to use the Smith Normal Form to explicitly compute the monodromy
group of any given rational billiards surface (Theorem 2).

Next, for the case when n = p for some prime p, we establish a correspondence between k-
gons modulo p and elements of Fp[x] which has the useful property that the monodromy group of
the k-gon is completely determined by the greatest common divisor of the polynomial and xk −
1(Proposition 6). This correspondence allows us to complete the classification of all monodromy
groups of polygonal billiard surfaces for k-gons when n = p is prime and p > k (Theorem 4).

Finally, in Section 9, we provide some preliminary results for composite n which are suffi-
cient to give a complete classification for triangles and an analogue of the main result in [9] for
quadrilaterals.

Throughout this paper, we will reference many well known algebraic and number theoretic
results. See any introductory graduate abstract algebra book, such as [1], or number theory book,
such as [7], for a reference.
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2 Background

2.1 The Rational Billiard Surface Construction

A rational billiards surface is constructed by gluing together copies of a polygon that result from
consecutive reflections across the sides. This name is motivated by the task of examining the paths
of balls that bounce around the interior of a billiard table. When a ball hits a side of the table,
the resulting bounce is instead represented by gluing a reflection of the table across that side and
continuing the billiard path in the reflected copy in the same direction. This way, the path of a
ball is represented by a single geodesic on a flat surface instead of a jagged path that may cross
back on itself. Equipped with this intuition, a rational billiards surface is constructed from all of
the reflections required to account for every possible path a ball could take.

More formally, a rational billiard surface can be constructed from a k-gon P whose angles are
rational multiples of π, in the following way. Label the sides of P as e0, . . . ek−1, in consecutive

counterclockwise order around P . Label the angles of P as θi =
aiπ

n
, where θi is the internal

angle formed by sides ei and ei+1 and n ∈ N is the least common denominator for the various
ai
n
. Let Γ be the dihedral group generated by the reflections r0, . . . , rk−1 across lines through the

origin parallel to the corresponding sides of P . This group consists of 2n elements [2], consisting
of n Euclidean rotations and n Euclidean reflections. The rotation subgroup of Γ is generated by

rotation by the angle
2π

n
. Hence we may label the rotations using the notation ρm for rotation

by an angle of
2mπ

n
. Let P = {γ(P ) : γ ∈ Γ}. For each γ(P ) ∈ P and each ri, we glue together

γ(P ) and γri(P ) along their copies of ei. The resulting object is called a translation surface, since
it is a Riemann surface whose change-of-coordinate maps are translations. See [12] and [13] for a
detailed description of the rational billiards construction.

2.2 Defining a Monodromy Group on the Surface

Next, we draw a graph on this surface by placing a vertex in the center of each copy of P and
labeling it with the corresponding element of Γ. We draw an edge between two vertices α and
β precisely when α = βri for some i. This graph is the Cayley graph for Γ with generating set
r0, . . . , rk−1. See [11] for a more in-depth exposition on this graph.

Since the generating set consists of reflections, this graph is bipartite, where one partite vertex
set is the set of Euclidean rotations in Γ and the other partite vertex set is the set of Euclidean
reflections in Γ.

We will define a labeling scheme, introduced in [9], for the edges of the graph in following way.
Take an arbitrary edge of the graph; one endpoint will be a vertex labeled ρm and the other endpoint
will be ρmri, for integers m and i. We label this edge with the ordered pair (m, i) ∈ Cn×Ck where
Cn × Ck is viewed as a set and not a group. (Here, Cn represents the cyclic group of order n.) In
fact this defines a bijection between the edge set of the graph and Cn × Ck.

We can define a dessin d’enfant on the surface by assigning a color to each of the partite sets
(say, black for rotation and white for reflection) and by defining a cyclic ordering of the edges
(oriented counterclockwise) around each vertex [6]. The ordering around a black vertex ρm is
(m, 0), (m, 1), . . . , (m, k− 1), and the ordering around a white vertex ρmri is (m, i), (m− ai−1, i−
1), (m− ai − ai−1, i− 2), . . . , (m+ ai+1, i+ 1). See Figure 1.

The ordering around a black vertex is apparent from our labeling scheme. To justify the
ordering around a white vertex, observe that ri+1ri = ρ−ai

and ρaρb = ρa+b, by basic facts about
the composition of Euclidean reflections and rotations [11]. See Figure 2 for an example of this
construction for the equilateral triangle, and see [9] for further exposition on triangular billiards
surfaces.

The monodromy group of this dessin is a group ⟨σ0, σ1⟩ of permutations of the edges generated
by two permutations σ0 and σ1. We define σ0 to be the permutation that takes each edge to
the next edge in the cyclic ordering about its black vertex. Similarly, we define σ1 to be the
permutation that takes each edge to the next edge in the cyclic ordering about its white vertex.

Therefore, we have that for any edge (m, i),

σ0[(m, i)] = (m, i+ 1) (1)

and

σ1[(m, i)] = (m− ai−1, i− 1). (2)

2



Figure 1

2.3 Representing Polygons by k-tuples

Let P be a rational polygon with consecutive internal angles
aiπ

n
, where a0+ . . .+ak−1 = (k−2)n

and gcd(a0, . . . , ak−1, n) = 1. We shall use the notation [a0, a1, . . . , ak−1] to represent P . Although
this notation does not uniquely define P up to geometric similarity when k > 3, it does uniquely
define the dessin drawn on P up to graph isomorphism. This motivates the following definition.

Definition 1. If k, n ∈ N with k ≥ 3, then an ordered k-tuple of positive integers [a0, . . . , ak−1]
represents a geometric polygon, or geometric k-gon, modulo n when a0+ · · ·+ak−1 = (k−2)n and
ai < 2n, ai ̸= n for all i and gcd(a0, . . . , ak−1, n) = 1. Throughout this paper, we will regularly
use the term k-gon to refer to a geometric k-gon.

Remark. The angles of a k-gon represented by [a0, . . . , ak−1] modulo n are a0

n π, . . . , ak−1

n π.

It is not obvious that every k-tuple [a0, . . . , ak−1] that represents a polygon modulo n corre-
sponds to a polygon in the plane with zero crossings. However, it is in fact true.

Proposition 1 (Theorem 1, [3]). Suppose that θ0, . . . , θk−1 is a sequence of angles (in radians) in
the set (0, π)∪ (π, 2π). If θ0 + · · ·+ θk−1 = (k− 2)π, then there exists a polygon in the plane with
no crossings with angles θ0, . . . , θk−1 in that sequence.

Using this same convention, if the polygon P is represented by [a0, a1, . . . , ak−1] then we will use
the notation X(a0, . . . , ak−1) for the rational billiards surface arising from P and D(a0, . . . , ak−1)
to represent the dessin drawn on X(a0, . . . , ak−1). Finally, we will use G(a0, . . . , ak−1) to represent
the monodromy group of that dessin.

3 Semidirect Product Structure of the Monodromy Group

The goal of this section is to describe the monodromy groups as semidirect products of abelian
groups.

Theorem 1. Let [a0, . . . , ak−1] represent a k-gon modulo n. Let G(a0, . . . , ak−1) = ⟨σ0, σ1⟩ be the
monodromy group of the dessin D(a0, . . . , ak−1) drawn on the rational polygonal billiards surface
X(a0, . . . , ak−1). Setting N = ⟨σx

0σ
x
1 : 0 < x < k⟩ and H = ⟨σ0⟩, we have G(a0, . . . , ak−1) =

N ⋊H.

Lemma 1. The permutations σx
0σ

x
1 and σy

0σ
y
1 commute.

Proof. Let (m, i) ∈ Cn × Ck be an arbitrary edge of the dessin.
From (1) and (2) we have that

σx
0σ

x
1 [(m, i)] = σx

0

m−
x∑

j=1

ai−j , i− x

 =

m−
i−1∑

j=i−x

aj , i

 . (3)

3



Figure 2

Therefore,

σy
0σ

y
1σ

x
0σ

x
1 [(m, i)] = σy

0σ
y
1

m−
i−1∑

j=i−x

aj , i

 =

m−

 i−1∑
j=i−x

aj +

i−1∑
j=i−y

aj

 , i

 .

Finally,

σx
0σ

x
1σ

y
0σ

y
1 [(m, i)] = σx

0σ
x
1

m−
i−1∑

j=i−y

aj , i

 =

m−

 i−1∑
j=i−x

aj +

i−1∑
j=i−y

aj

 , i

 ,

establishing commutativity.

Definition 2. Let N = ⟨σx
0σ

x
1 : 0 < x < k⟩. Observe that σy

1σ
y
0 = (σk−y

0 σk−y
1 )−1.

Lemma 2. The subgroup N is precisely the subgroup of G(a0, . . . , ak−1) that fixes the second
component of the coordinates (m, i).

Proof. Let N ′ be the collection of elements in G(a0, . . . , ak−1) that fix the second component of
(m, i). Clearly the identity is an element of N ′. If g, h ∈ N ′ then gh and g−1 also fix the second
component of (m, i). Hence, N ′ is a subgroup of G(a0, . . . , ak−1) and the formula for σx

0σ
x
1 in (3)

shows that σx
0σ

x
1 ∈ N ′. Since σx

0σ
x
1 generate N as x ranges from 1 to k − 1, we see that N ≤ N ′.

Every element inG(a0, . . . , ak−1) (and thus inN ′) can be written as a product g = (σx1
0 σy1

1 ) . . . (σxn
0 σyn

1 )
of n pairs of the form σxi

0 σyi

1 where xi, yi ∈ Z. We will show that N ′ ≤ N by induction on n. If
g = σx1

0 σy1

1 . . . σxn
0 σyn

1 ∈ N ′, we know that
∑

xi ≡
∑

yi mod k by (1) and (2).
Base Case: n = 1 In this case, we see that x1 ≡ y1 mod k. Since the orders of σ0 and σ1 are

both k, we can assume x1 = y1. Furthermore, we can also assume that 0 ≤ x1 < k. Hence, g ∈ N .
Induction Step: Suppose our theorem is true for n ≥ 1 and consider n + 1. That is, suppose

g = σx1
0 σy1

1 . . . σ
xn+1

0 σ
yn+1

1 ∈ N ′. Consider

g′ = (σx1
0 σx1

1 )−1g(σ
yn+1

0 σ
yn+1

1 )−1 = σy1−x1

1 σx2
0 σy2

1 . . . σxn
0 σyn

1 σ
xn+1−yn+1

0

Since g ∈ N ′ then g′ ∈ N ′ and (g′)−1 ∈ N ′. Let z1 = yn+1 − xn−1, z2 = −xn, . . . , zn = −x2 and
w1 = −ym, . . . , wn−1 = −y2, wn = x1 − y1. Observe that (g′)−1 = σz1

0 σw1
1 . . . σzn

0 σwn
1 . Thus by the

4



induction hypothesis, (g′)−1 ∈ N . Hence, g′ ∈ N and g ∈ N . By induction, we have proven the
desired result.

Lemma 3. N is a normal subgroup of G(a0, . . . , ak−1).

Proof. Since N = ⟨σx
0σ

x
1 : 0 < x < k⟩ and G(a0, . . . , ak−1) = ⟨σ0, σ1⟩, proving N◁G(a0, . . . , ak−1)

is equivalent to proving the following statements:

1. σ1(σ
x
0σ

x
1 )σ

−1
1 ∈ N

2. σ0(σ
x
0σ

x
1 )σ

−1
0 ∈ N

To prove 1, observe that

σ1(σ
x
0σ

x
1 )σ

−1
1 = (σ1σ0)(σ

x−1
0 σx−1

1 ) = (σk−1
0 σk−1

1 )−1(σx−1
0 σx−1

1 ) ∈ N.

To prove 2, observe that

σ0(σ
x
0σ

x
1 )σ

−1
0 = (σx+1

0 σx+1
1 )(σk−1

1 σk−1
0 ) = (σx+1

0 σx+1
1 )(σ0σ1)

−1 ∈ N.

Lemma 4. N ∩H = {id}

Proof. Recall that N = ⟨σx
0σ

x
1 : 0 < x < k⟩ and H = ⟨σ0⟩. Suppose the intersection of these

groups is not trivial. Then there is an element in N that is equal to σℓ
0 for some 0 < ℓ < k. Observe

that σℓ
0(m, i) = (m, i+ ℓ) and thus does not fix the second component of the edge labels. However,

N is generated by elements that fix the second component of the edge labels (3). Hence, we have
reached a contradiction.

Lemma 5. NH = G(a0, . . . , ak−1)

Proof. Recall that N = ⟨σx
0σ

x
1 : 0 < x < k⟩, H = ⟨σ0⟩, and G(a0, . . . , ak−1) = ⟨σ0, σ1⟩. Since

N ◁ G(a0, . . . , ak−1) and H ≤ G(a0, . . . , ak−1), we know that NH ≤ G(a0, . . . , ak−1). Observe
that σ0 ∈ NH and σ1 = (σk−1

0 σk−1
1 )−1σ−1

0 ∈ NH. Because NH contains the generators of
G(a0, . . . , ak−1), we conclude that NH = G(a0, . . . , ak−1).

Now we proceed with the proof of Theorem 1.

Proof of Theorem 1. The group G(a0, . . . , ak−1) is a semi direct product of subgroups N and
H if and only if the three conditions are true:

I. N ◁G(a0, . . . , ak−1)

II. N ∩H = {id}

III. NH = G(a0, . . . , ak−1)

Conditions I, II, and III are satisfied by Lemmas 3, 4, and 5 respectively. Therefore, G(a0, . . . , ak−1)
is a semidirect product of subgroups N and H.

Remark. The action of H on N in the semidirect product is via conjugation by elements of H.

4 Computing the Structure of N

In this section, we prove several properties about the subgroup N ◁ G(a0, . . . , ak−1), introduced
in Definition 2, to provide more precise information about the structure of N and, by extension,
G(a0, . . . , ak−1).

Let S = {σ−j
1 (σ−1

0 σ−1
1 )σj

1 : 0 ≤ j < k}. We first show that one can generate N using the
elements of S.

Lemma 6. The subgroup N is generated by S.

5



Proof. Recall that N = ⟨σx
0σ

x
1 : 0 < x < k⟩. Let S = {σ−j

1 (σ−1
0 σ−1

1 )σj
1 : 0 ≤ j < k}. We

claim ⟨S⟩ = N. Using (1) and (2), we see that σ−j
1 (σ−1

0 σ−1
1 )σj

1 fixes the second component of the
coordinates (m, i) and is thus an element of N by Lemma 2. Hence, ⟨S⟩ ≤ N .

We will prove that σj
0σ

j
1 ∈ ⟨S⟩ using induction. Observe that σ−1

1 (σ−1
0 σ−1

1 )σ1
1 = (σ0σ1)

−1.
Hence, σ0σ1 ∈ ⟨S⟩.

Suppose σj−1
0 σj−1

1 ∈ ⟨S⟩. Observe that σ−j
1 (σ−1

0 σ−1
1 )σj

1 = (σj
0σ

j
1)

−1σj−1
0 σj−1

1 which implies

σj
0σ

j
1 ∈ ⟨S⟩. Thus, σj

0σ
j
1 ∈ ⟨S⟩ for all j > 0 and hence N ≤ ⟨S⟩.

As we observed in Lemma 2, the subgroup N is precisely the subgroup of G(a0, . . . , ak−1) which
fixes the second component of the edge (m, i). Hence, we may view any element g ∈ N as a column

vector

 x0

...
xk−1

 ∈ (Z/nZ)k, where g(m, i) = (m+ xi, i). It follows from equations (1) and (2) that

σ−j
1 (σ−1

0 σ−1
1 )σj

1(m, i) = (m+ ai−j , i). Therefore the set S = {σ−j
1 (σ−1

0 σ−1
1 )σj

1 : 0 ≤ j < k} can be
identified with the columns of the matrix

C =



a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . .

. . . ak−1

ak−1 ak−2 . . . a1 a0

 (4)

in Mk(Z/nZ) where Mk(Z/nZ) is the set of k × k matrices with entries in Z/nZ. We make this
statement more formal in the following lemma.

Lemma 7. The subgroup N is isomorphic to the span of the columns of C.

Proof. From (1), (2), and Lemma 2, we see that an arbitrary element g ∈ N has the form g(m, i) =

(m + xi, i) where x =

 x0

...
xk−1

 ∈ (Z/nZ)k. We define a homomorphism φ : N → (Z/nZ)k via

φ(g) = x. It is easy to check that φ is a well-defined map with φ(g1g2) = φ(g1) + φ(g2).

It is also easy to see that φ is injective. If φ(g) =

0...
0

, then g fixes every edge of the dessin.

Hence, g is the identity element since the monodromy group acts faithfully on the edges of the
dessin. Thus, we may conclude that φ maps N bijectively onto φ(N).

Since the elements of the set S generate N , we conclude that the set of vectors of the form

φ(σ−j
1 (σ−1

0 σ−1
1 )σj

1) =

 ak−j

...
ak−j−1

 where 0 ≤ j < k spans φ(N). And thus, N is isomorphic to the

span of the columns of C.

Remark. It is worth noting that when viewing N as a set of vectors in (Z/nZ)k, there is a natural
group action of Ck

∼= H on N which is the cyclic permutation of the vector entries. That is, the
homomorphic image of H in Aut(N) is precisely the subgroup of cyclic permutations of vector
entries.

In order to determine the group structure of N , we will use row and column operations on the
matrix C.

4.1 Smith Normal Form

In previous sections we establish that the monodromy group G(a0, . . . , ak−1) can be expressed as
the semidirect product of Ck and some finite abelian subgroup N , where N has a natural Z/nZ-
module structure. In this section we explore the explicit computation of N . This can be done via
the Smith Normal Form. See [1] or [10] for a reference.

Definition 3. The Smith Normal Form of a matrix A with entries from a ring R is a factorization
A = UDV where

6



• D =

d1 . . .

dk

 is a diagonal matrix

• di|di+1 for all i

• U and V are square matrices with determinant ±1

Consider the R-module M , which is a submodule of Rk, generated by the columns of A. Then
as a group, M is isomorphic to the direct product

d1R× · · · × dkR.

The elements d1 . . . , dk are called the elementary divisors of M . In [5], Kaplansky defines an
elementary divisor ring R to be a ring over which all matrices have a Smith Normal Form. It is
well-known (see [5]) that all PID’s are elementary divisor rings. However, not all elementary divisor
rings are domains. Indeed, it follows from Corollary 2.3 of [8] that Z/nZ is an elementary divisor
ring. Hence, we can always compute the group structure of one of our particular monodromy
groups by computing the Smith Normal Form of the associated circulant matrix.

In practice, algorithms exist for computing the Smith Normal Form of a matrix over Z. There-
fore, to compute the Smith Normal Form of a matrix over Z/nZ, it is convenient to compute the
Smith Normal Form of an associated matrix over Z and then apply the standard ring homomor-
phism to reduce modulo n.

Since the matrices U and V in Definition 3 are invertible over Z, their reductions modulo n (call

them U , V ) are invertible over Z/nZ. Therefore, the transformation x 7→ U
−1 ·x is an isomorphism

from (Z/nZ)k 7→ (Z/nZ)k.
Hence, the Z/nZ submodule generated by v0V

−1
, . . . , vk−1V

−1
is isomorphic to the Z/nZ

submodule generated by the columns of D which are

U
−1

v1V
−1

=


d1
0
...
0

 , . . . , U
−1

vkV
−1

=


0
...
0

dk

 .

Hence, N is isomorphic to d1Z/nZ ⊕ · · · ⊕ dkZ/nZ where di is the reduction of di modulo n.
And therefore,

N ∼=
k⊕

i=1

Z/δiZ

where δi =
n

gcd(di,n)
. We summarize these results with the following theorem, combining the results

from Theorem 1.

Theorem 2. Let C be the matrix defined in (4) and let d1, . . . , dk be the elementary divisors of
C coming from its Smith Normal Form when viewing C as a matrix over Z. Then

G(a0, . . . , ak−1) =

(
k⊕

i=1

Cδi

)
⋊ Ck

where δi =
n

gcd(di,n)
.

Note that some of the δi may equal 1, in which case the group Cδi is trivial.

Example 1. Consider the quadrilateral with angles ( 25π,
2
5π,

2
5π,

4
5π). This gives the billiards

surface X(2, 2, 2, 4) and dessin D(2, 2, 2, 4). To calculate the monodromy group G(2, 2, 2, 4) of the
dessin, we compute the smith normal form for the circulant matrix

C =


2 4 2 2
2 2 4 2
2 2 2 4
4 2 2 2

 = UDV =


−11 −12 −14 −3
−11 −12 −13 −3
−7 −8 −9 −2
−11 −13 −14 −3



2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 10




1 0 0 4
−1 1 0 0
0 −1 1 0
0 0 −1 −3


where U and V are unimodular. This gives us

δ1 = δ2 = δ3 =
5

gcd(2, 5)
= 5, δ4 =

5

gcd(10, 5)
= 1.

Then we have
G(2, 2, 2, 4) = (C5 × C5 × C5)⋊ C4.

7



As a consequence of Theorem 2, one can quickly compute the monodromy groups of any rational
triangular billiards surfaces.

Corollary 1 (Theorem 1, [9]). Let [a0, a1, a2] represent a triangle modulo n. Let G(a0, a1, a2) =
⟨σ0, σ1⟩ be the monodromy group of the dessin D(a0, a1, a2) drawn on the triangular billiards
surface X(a0, a1, a2). Setting N = ⟨σ0σ1, σ

2
0σ

2
1⟩ and H = ⟨σ0⟩, we have G(a0, a1, a2) = N ⋊ H.

Furthermore, if n = a0 + a1 + a2 and α = gcd(n, a0a1 − a22), then

G(a0, a1, a2) ∼= (Cn × Cn
α
)⋊ C3.

Proof. Consider the arbitrary rational triangle with angles
(a0π

n
,
a1π

n
,
a2π

n

)
, where the ai are

positive integers, a0 + a1 + a2 = n, and gcd(a0, a1, a2, n) = 1. Observe that it follows that
gcd(a0, a1, n) = 1 as well. The normal subgroup N of the associated monodromy group is repre-

sented by the column span of C =

a0 a1 a2
a1 a2 a0
a2 a0 a1

 over Z/nZ.

Since gcd(a0, a1, n) = 1, there exist integers s, t, and u such that sa0+ ta1+un = 1, and hence
sa0 + ta1 ≡ 1 mod n.

We can perform the following transformations of C by applying row and column operations
(working modulo n):

C =

a0 a1 a2
a1 a2 a0
a2 a0 a1

→

a0 a1 a2
a1 a2 a0
0 0 0

→

a0 a1 0
a1 a2 0
0 0 0

→

1 sa1 + ta2 0
0 −a21 + a0a2 0
0 0 0

→

1 0 0
0 −a21 + a0a2 0
0 0 0

 .

This yields the factorization1 0 0
0 −a21 + a0a2 0
0 0 0

 =

 s t 0
−a1 a0 0
0 1 1

a0 a1 a2
a1 a2 a0
a2 a0 a1

 1 0 1
−sa1 + ta2 1 1

0 0 1

 .

Or, equivalently,

C =

a0 a1 a2
a1 a2 a0
a2 a0 a1

 =

 a0 −t 0
a1 s 0
−a1 −s 1

1 0 0
0 −a21 + a0a2 0
0 0 0

 1 0 −1
sa1 − ta2 1 −sa1 + ta2 − 1

0 0 1

 .

One easily checks that the diagonalizing matrices are unimodular. It then follows from Theorem
2 that the monodromy group of the (a0, a1, a2) triangle is

(Cn × Cn/α)⋊ C3,

where α = gcd(n, a0a2 − a21).

Corollary 2 (Corollary to Theorem 2). The monodromy group of the dessin drawn on the rational
billiards surface of the regular k-gon is C k

gcd(k,2)
× Ck.

Proof. The angles of the regular k-gon are k−2
k π. When k is odd, a0 = · · · = ak−1 = k − 2

and n = k since gcd(k − 2, k) = 1. When k is even, a0 = · · · = ak−1 = k−2
2 and n = k

2 since

gcd(k−2
2 , k

2 ) = 1.
Since a0 = · · · = ak−1, we see that the matrix C is a k × k matrix whose entries are all equal

to k−2
gcd(k,2) . We deduce that the Smith Normal Form matrix D =


k−2

gcd(k,2) 0 . . . 0

0 0 . . . 0
...

...
. . . 0

0 0 0 0

.
By Theorem 2, it follows that G(a0, . . . , ak−1) ∼= C k

gcd(k,2)
⋊Ck. Since the subgroup H ∼= Ck acts

on N ∼= C k
gcd(k,2)

via cyclic permutation of the vector entries of C, we see that the the semidirect

product action of H on N is trivial since all the columns of C are identical. Hence, the semidirect
product is actually a direct product.

8



In [4], Howell addresses the problem of computing the span of a set of vectors over Z/nZ. Howell
considers a matrix A with entries in Z/nZ. He then shows that A can be reduced via elementary
row operations to an upper triangular matrix U whose rows have the same span as A. This matrix
U is known as Howell Normal Form. However, Smith Normal Form has the advantage of directly
computing the isomorphism class of the vector span as an abelian group, via the ordered list of
elementary divisors.

5 Algebraic Polygons

In this section, we introduce the notion of an algebraic polygon and develop the relevant theory
with the goal of proving results about actual polygons. We arrive at the concept of an algebraic
polygon by relaxing the constraints on polygons modulo n slightly:

Definition 4. If k, n ∈ N with k ≥ 2, then an ordered k-tuple of nonnegative integers [a0, . . . , ak−1]
represents an algebraic polygon, or k-gon, modulo n if a0+· · ·+ak−1 ≡ 0 mod n and gcd(a0, . . . , ak−1, n) =
1. Observe that [0, . . . , 0] is not an algebraic k-gon.

Every geometric polygon modulo n is also an algebraic polygon modulo n. We shall define a
“monodromy group” for any algebraic polygon in a natural way which coincides with the mon-
odromy groups associated to geometric polygons described in Section 4. It turns out that it is
relatively easy to classify the possible monodromy groups for all algebraic polygons modulo a
prime p (we do this in Theorem 3). The challenge is to determine when, for a given monodromy
group G of an algebraic polygon, there exists a geometric polygon with a monodromy group isomor-
phic to G. Lemmas 8 and 9 show that this is always possible if none of the entries in the algebraic
polygon are zero modulo n. This motivates work in Section 8 to produce algebraic polygons with
nonzero entries.

Remark. Note that the definition of an algebraic polygon allows for an algebraic 2-gon even
though no geometric 2-gons exist. Despite this fact, algebraic 2-gons can be used to produce
geometric k-gons via Proposition 3.

5.1 Results About Algebraic Polygons

Definition 5. We say that two algebraic polygons, [a0, . . . , ak−1] and [b0, . . . , bk−1] modulo n are
associates if there exists c ∈ (Z/nZ)× such that bi ≡ cai (mod n) for all i.

Remark. Our definition of associate algebraic polygons coincides with the definition of associate
triangles from Aurell and Itzykson [2].

Observe that reflex angles lead to interesting associate polygons. For example, the (algebraic)
polygons [3, 5, 11, 1] and [3, 15, 1, 1] are associates modulo 10.

Proposition 2. Suppose that [a0, . . . , ak−1] represents an algebraic polygon modulo n. Further
suppose that 0 < ai < 2n, ai ̸= n for all i and a0 + · · · + ak−1 ≤ (k − 2)n. Then there exists an
associate polygon [b0, . . . , bk−1]. Consequently, there exists a polygon in the plane with consecutive

angles b0
n π, . . . , bk−1

n π and zero crossings.

Observe that Proposition 2 produces a polygon, not simply an algebraic polygon.

Proof. If a0 + · · ·+ ak−1 = (k− 2)n, then, letting ai = bi, [a0, . . . , ak−1] = [b0, . . . , bk−1] represents

an associate polygon modulo n. If a0 + · · · + ak−1 < (k − 2)n, then let d = (k−2)n−(a0+···+ak−1)
n .

We can find ai1 , . . . , aid with i1, . . . , id distinct such that aij < n. Add n to each of these aij to
obtain bij = aij + n ≡ aij mod n. Let bi = ai for all other indices i ̸= ij . Thus, [b0, . . . , bk−1]
represents an associate k-gon modulo n. By Proposition 1, there exists a polygon in the plane with
consecutive angles b0

n π, . . . , bk−1

n π and zero crossings.

Example 2. Consider the algebraic polygon [1, 2, 2, 7] modulo 12. Using the procedure in Propo-
sition 2, we produce the associate geometric polygon [13, 2, 2, 7].

We will use the following lemma many times to verify that an algebraic k-gon satisfies the
hypotheses of Proposition 2.

Lemma 8. Suppose that [a0, . . . , ak−1] is an algebraic polygon modulo n with ai ̸≡ 0 mod n for
all i. Then, [a0, . . . , ak−1] has an associate k-gon [b0, . . . , bk−1] that is a polygon modulo n. If
n = p is a prime and p ≥ k− 1, then there exists an associate convex k-gon [b0, . . . , bk−1] that is a
polygon modulo p.
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Proof. Let di = gcd(ai, n). Observe that the subgroup ⟨ai : 0 ≤ i < k⟩ of Z/nZ is isomorphic to
⟨di⟩. Let d = min(di : 0 ≤ i < k). Without loss of generality, assume that d = gcd(a0, n). The
proof is analogous in all other cases.

There exists c ∈ (Z/nZ)× such that ca0 = d where ca0 is the reduction of ca0 modulo n.
Further observe that caj ≤ n−dj ≤ n−d for 1 ≤ j < k since caj ̸≡ 0 mod n and caj is a multiple
of dj . Hence,

ca0 + ca1 + · · ·+ cak−1 ≤ d+ (n− d) + · · ·+ (n− d) < (k − 1)n.

Observe that
ca0 + ca1 + · · ·+ cak−1 ≡ c(a0 + · · ·+ ak−1) ≡ 0 mod n.

Therefore, ca0 + ca1 + · · · + cak−1 ≤ (k − 2)n. Using Proposition 2, we obtain the desired
[b0, . . . , bk−1].

Now consider the case where n = p is a prime and p ≥ k − 1. Since ai ̸≡ 0 mod p for all i,
the reduction of ai modulo p can be chosen so that 0 < ai < p for all i. Since [a0, . . . , ak−1] is an
algebraic polygon, we know that a0+ · · ·+ak−1 ≡ 0 mod p. Therefore, a0+ · · ·+ak−1 = cp where

0 < c < k. Choose c′ ∈ Z/pZ so that c′ ·c ≡ k−2 mod p. We see that c′ · a0+···+ak−1

p ≡ c′ ·c ≡ k−2

mod p. Hence, c′a0 + . . . c′ak−2 = (k − 2)p and thus, letting bi = c′ai, [b0, . . . , bk−1] is a k-gon
modulo p. Since 0 < bi < p for all i, we see that [b0, . . . , bk−1] represents a convex polygon.

5.2 Monodromy Groups of Algebraic Polygons

The purpose of introducing algebraic polygons is to understand monodromy groups of actual poly-
gons. Therefore, we must associate to each algebraic polygon a monodromy group that coincides
with the monodromy group in Section 2 for geometric polygons.

Definition 6. The monodromy group associated with an algebraic k-gon [a0, . . . , ak−1] modulo n
is the group N ⋊ Ck where N is the additive group generated by the columns of the matrix

C =



a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . .

. . . ak−1

ak−1 ak−2 . . . a1 a0


in the Z/nZ module (Z/nZ)k. The group Ck acts on the columns of C by cyclicly permuting the
entries of a vector.

The monodromy groups that arose in Section 2 were monodromy groups of dessins d’enfant
drawn on rational billiards surfaces. Although these surfaces and dessins do not exist for algebraic
polygons, associating a monodromy group with them will still prove quite useful theoretically.

Remark. If [a0, . . . , ak−1] is a k-gon modulo n, then its monodromy group above is the same
as the monodromy group of D(a0, . . . , ak−1) drawn on the rational polygonal billiards surface
X(a0, . . . , ak−1). See Sections 2 and 4 for reference.

The following lemma illustrates that the monodromy group of associate algebraic polygons are
isomorphic.

Lemma 9. Fix n ∈ N. If [a0, . . . , ak−1] and [b0, . . . , bk−1] are associate algebraic polygons, then
their monodromy groups are the same.

Proof. Since [a0, . . . , ak−1] and [b0, . . . , bk−1] are associates, there exists c ∈ (Z/nZ)× such that
bi ≡ cpi for all i. Let C ′ and C ′′ be the corresponding circulant matrices for [b0, . . . , bk−1] and
[a0, . . . , ak−1] respectively. Therefore,

C ′ =



b0 bk−1 . . . b2 b1
b1 b0 bk−1 b2
... b1 b0

. . .
...

bk−2
. . .

. . . bk−1

bk−1 bk−2 . . . b1 b0

 ≡ c



a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . .

. . . ak−1

ak−1 ak−2 . . . a1 a0

 ≡ c · C ′′ mod n.

Since C ′ and C ′′, are scalar multiples of each other by a unit, the spans of their columns are equal.
The result follows.
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Proposition 3. Suppose that [a0, . . . , ak−1] and [b0, . . . , bk−1] represent algebraic k-gons modulo
n1 and n2 respectively where gcd(n1, n2) = 1. Suppose their respective monodromy groups are
N1 ⋊ Ck and N2 ⋊ Ck. Then there exists an algebraic k-gon [c0, . . . , ck−1] modulo n1n2 with
monodromy group (N1 ×N2)⋊Ck. Furthermore, if ai ̸≡ 0 mod n1 or bi ̸≡ 0 mod n2 for every i,
then ci ̸≡ 0 mod n1n2 for all i.

Proof. By the Chinese Remainder Theorem, there exist unique integers ci with 0 < ci < n1n2

such that ci ≡ ai mod n1 and ci ≡ bi mod n2 for all i. Since ci ≡ ai mod n1, we see that
c0 + · · · + ck−1 ≡ 0 mod n1 and gcd(c0, . . . , ck−1, n1) = 1. A similar argument shows that c0 +
· · · + ck−1 ≡ 0 mod n2 and gcd(c0, . . . , ck−1, n2) = 1. Hence, c0 + · · · + ck−1 ≡ 0 mod n1n2 and
gcd(c0, . . . , ck−1, n1n2) = 1 since gcd(n1, n2) = 1.

Now, we will will compute the monodromy group of [c0, . . . , ck−1] which is N ⋊Ck where N is
an abelian group and submodule of (Z/n1n2Z)k. Since ci ≡ ai mod n1 for all i , we see that

C ′ =



c0 ck−1 . . . c2 c1
c1 c0 ck−1 c2
... c1 c0

. . .
...

ck−2
. . .

. . . ck−1

ck−1 ck−2 . . . c1 c0

 ≡



a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . .

. . . ak−1

ak−1 ak−2 . . . a1 a0

 = C ′′ mod n1. (5)

Let d1, . . . , dk be the elementary divisors of C ′. They are the same modulo n1 as the elementary
divisors of C ′′. By Theorem 2, we know the monodromy group of [c0, . . . , ck−1] is

k⊕
i=1

Cδi =

k⊕
i=1

C n1n2
gcd(di,n1n2)

=

k⊕
i=1

C n1
gcd(di,n1)

⊕ C n2
gcd(di,n2)

(6)

since gcd(n1, n2) = 1. Thus, the monodromy group of [a0, . . . , ak−1] is N1 =

k⊕
i=1

C n1
gcd(di,n1)

.

Therefore, N1
∼= n2N ∼= N/n1N . If N2 is the monodromy group of [b0, . . . , bk−1], then a similar

argument shows that N2
∼= n1N ∼= N/n2N . We conclude that N ∼= N1 ×N2 and the main result

follows.

Remark. In essence, Proposition 3 allows one to combine two algebraic k-gons with coprime
moduli and create a new algebraic k-gon [c0, . . . , ck−1]. The monodromy group of [c0, . . . , ck−1] is
a combination of the monodromy groups of the original two algebraic k-gons.

Example 3. One can actually combine two algebraic k-gons with no k-gon associates to create
an algebraic k-gon with a k-gon associate. Consider the algebraic 3-gon [0, 1, 1] modulo 2 with
monodromy group C2

2 ⋊ C3 and the algebraic 3-gon [1, 0, 4] modulo 5 with monodromy group
C2

5 ⋊ C3. Neither of these algebraic 3-gons have a polygonal associate. However, if we combine
them using Proposition 3, we obtain the algebraic 3-gon [6, 5, 9] modulo 10. This algebraic 3-gon
has a 3-gon associate [4, 5, 1] modulo 10 obtained by scaling by 9 mod 10. The 3-gon [4, 5, 1] has
monodromy group (C2

2 × C2
5 )⋊ C3

∼= C2
10 ⋊ C3.

Proposition 4. Suppose that [c0, . . . , ck−1] is an algebraic k-gon modulo n1n2 with n1, n2 > 1 and
with monodromy group N⋊Ck. Then there exists an algebraic k-gon [a0, . . . , ak−1] modulo n1 with
monodromy group (n2N)⋊Ck. If gcd(n1, n2) = 1, then the monodromy group (n2N)⋊Ck

∼= (N/
n1N)⋊ Ck.

Proof. Observe that ci ̸≡ 0 mod n1 for some i. If n1|ci for all i, then gcd(c0, . . . , ck−1, n1n2) > 1,
a contradiction with the definition of an algebraic polygon.

Choose ai ≡ ci mod n1 for all i. We see that a0+· · ·+ak−1 ≡ 0 mod n1 since c0+· · ·+ck−1 ≡ 0
mod n1n2. Suppose that the monodromy group of [a0, . . . , ak−1] is N1 ⋊ Ck. By the exact same
calculation as in (5), we conclude that N1

∼= n2N .
Now suppose gcd(n1, n2) = 1. Using (6), we see that the monodromy group of [c0, . . . , ck−1]

has the form N ⋊ Ck where

N =

k⊕
i=1

Cδi =

k⊕
i=1

C n1
gcd(di,n1)

⊕ C n2
gcd(di,n2)

Observe that n2N ∼=
k⊕

i=1

C n1
gcd(di,n1)

and n1N ∼=
k⊕

i=1

C n2
gcd(di,n2)

. Thus, n2N ∼= N/n1N.
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Remark. If n1 and n2 are coprime in Proposition 4, then N1
∼= N/n1N . However, this is not

the case when n1 and n2 have a non-trivial gcd. We illustrate this phenomenon in the following
example.

Example 4. Consider the k-gon [1, 2, 24, 23] modulo 25. The monodromy group is N ⋊C4 where
N ∼= C25 × C5. If we apply Proposition 4 when n1 = 5, we obtain the k-gon [1, 2, 4, 3] which has
monodromy group N1 ⋊ C4 where N1

∼= C5
∼= 5N ̸∼= N/5N .

The following proposition allows us to lift an algebraic k-gon modulo n to an algebraic ℓ-gon
modulo n if k|ℓ.

Proposition 5. Suppose that k, ℓ ∈ N and k|ℓ. Further suppose that [a0, . . . , ak−1] is an algebraic
k-gon modulo n with monodromy group N⋊Ck. Then there exists an algebraic ℓ-gon [c0, . . . , cℓ−1]
modulo n with monodromy group N ⋊ Cℓ.

Proof. Let ci = aj where j is the least nonnegative integer satisfying i ≡ j mod k. In essence,

[c0, . . . , cℓ−1] = [a0, . . . , ak−1, a0, . . . , ak−1, a0, . . . , ak−1]

where the pattern a0, . . . , ak−1 repeats itself ℓ
k times. Let

C =



a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . .

. . . ak−1

ak−1 ak−2 . . . a1 a0


and observe that

C ′ =



c0 cℓ−1 . . . c2 c1
c1 c0 cℓ−1 c2
... c1 c0

. . .
...

cℓ−2
. . .

. . . cℓ−1

cℓ−1 cℓ−2 . . . c1 c0

 =



C C . . . C C
C C C C
... C C

. . .
...

C
...

... C
C C . . . C C


where the matrix C appears ℓ

k times in each row and column. Therefore, the group generated
by the columns of C ′ is isomorphic to the group generated by the columns of C and thus the
monodromy group of [c0, . . . , cℓ−1] is N ⋊ Cℓ.

The following example illustrates how Proposition 5 is used to lift an algebraic k-gon to an
algebraic ℓ-gon.

Example 5. Let k = 2, ℓ = 4 and consider the algebraic 2-gon [3, 4] modulo n = 7. Using
Proposition 5, lift [3, 4] to the algebraic 4-gon [3, 4, 3, 4] modulo 7. The monodromy group of [3, 4]
is C7 ⋊ C2 and the monodromy group of [3, 4, 3, 4] is C7 ⋊ C4.

A quick lemma about semidirect products is needed to complete our series of results about
combining algebraic polygons to form new algebraic polygons.

Lemma 10. Suppose that N1, H1, N2, H2 are finite groups. If G1
∼= N1 ⋊H1 and G2

∼= N2 ⋊H2

then G1 ×G2
∼= (N1 ×N2)⋊ (H1 ×H2).

Proof. An element of the group G1 ×G2 has the form ((n1, h1), (n2, h2)) where n1 ∈ N1, n2 ∈ N2,
h1 ∈ H1, and h2 ∈ H2. Let ϵ represent the identify in the respective group. Consider the subgroups

N = ⟨((n1, ϵ), (ϵ, ϵ)), ((ϵ, ϵ), (n2, ϵ)) : n1 ∈ N1, n2 ∈ N2⟩

and
H = ⟨((ϵ, h1), (ϵ, ϵ)), ((ϵ, ϵ), (ϵ, h2)) : h1 ∈ H1, h2 ∈ H2⟩.

It is easy to see that N ∼= N1 ×N2 and H ∼= H1 ×H2 and NH = G1 ×G2. It is also easy to see
that N ∩H contains only the identity of G1 ×G2. In order to prove that G1 ×G2 is isomorphic to
N ⋊H, we need to prove that N ◁ G1×G2. This follows immediately from the fact that N1 ◁ G1

and N2 ◁ G2.
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Now, let us combine the results from Propositions 3 and 5 to obtain the following corollary.

Corollary 3. Fix n1, n2, k, ℓ ∈ N with k, ℓ ≥ 2. Suppose that gcd(n1, n2) = 1 and gcd(k, ℓ) = 1. If
[a0, . . . , ak−1] is an algebraic k-gon modulo n1 with monodromy group N1⋊Ck and [b0, . . . , bℓ−1] is
an algebraic ℓ-gon modulo n2 with monodromy group N2⋊Cℓ, then there exists an algebraic kℓ-gon
[c0, . . . , ckℓ−1] modulo n1n2 with monodromy group (N1 ×N2)⋊ Cℓk

∼= (N1 ⋊ Ck)× (N2 ⋊ Cℓ).

Proof. Combining Propositions 3 and 5 give us the desired algebraic kℓ-gon [c0, . . . , ckℓ−1] with
monodromy group (N1 ⋊ N2) ⋊ Ckℓ. Since gcd(k, ℓ) = 1, Ckℓ

∼= Ck × Cℓ. Thus, by Lemma 10,
(N1 ⋊N2)⋊ Ckℓ

∼= (N1 ⋊ Ck)× (N2 ⋊ Cℓ).

The following example illustrates how to use Corollary 3.

Example 6. Let k = 3, ℓ = 4, n1 = 7 and n2 = 5. Let [1, 2, 4] be our algebraic 3-gon modulo 7
and let [2, 3, 3, 2] be our algebraic 4-gon modulo 5. The monodromy group of group of [1, 2, 4] is
C7 ⋊C3 and the monodromy group of [2, 3, 3, 2] is C2

5 ⋊C4. Using Proposition 5, we lift [1, 2, 4] to
[1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4] and we lift [2, 3, 3, 2] to [2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2]. Using Proposition 3,
we combine these algebraic 12-gons to obtain [22, 23, 8, 22, 2, 18, 8, 2, 32, 8, 23, 32] modulo 35 which
has monodromy group (C7 × C2

5 )⋊ C12
∼= (C7 ⋊ C3)× (C2

5 ⋊ C4).

6 Results about Circulant Matrices

The following results on circulant matrices will be needed to compute monodromy groups of poly-
gons modulo p when p is prime. The results are well known over C, and we provide the proofs for
the corresponding results over finite fields for completeness.

Definition 7. A k × k circulant matrix C has the following form

C =



a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . .

. . . ak−1

ak−1 ak−2 . . . a1 a0

 .

For the purposes of this paper, the entries ci are integers or integers modulo n.

Definition 8. We call the polynomial f(x) = a0+a1x+ · · ·+ak−1x
k−1 the associated polynomial

of the circulant matrix C.

Lemma 11. Assume that you have a k × k circulant matrix C with entries in a field F. Also
assume that ω is a primitive kth root of unity. The vectors

vj =


1
ωj

ω2j

...
ω(k−1)j


for j = 0, . . . , k − 1 are eigenvectors of a circulant matrix C with respective eigenvalues λj =
a0 + ak−1ω

j + ak−2ω
2j + · · ·+ a1ω

(k−1)j .

Proof. Let (C · vj)i denote the ith entry of the column vector C · vj . Observe that

(C · vj)i =
i∑

n=0

ai−n · ωnj +

k−i−2∑
n=0

ak−1−n · ω(i+1+n)j

= ωij

[
i∑

n=0

ai−n · ω(n−i)j +

k−i−2∑
n=0

ak−1−n · ω(1+n)j

]

= ωij

[
i∑

n=0

ai−n · ω(k+n−i)j +

k−i−2∑
n=0

ak−1−n · ω(1+n)j

]
.
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If we re-index the two sums letting n′ = i−n in the first sum and n′ = k− 1−n in the second
sum, we obtain:

(C · vj)i = ωij

[
i∑

n′=0

an′ω(k−n′)j +

k−1∑
n′=i+1

an′ωj(k−n′)

]
= ωij

[
a0 + ak−1ω

j + ak−2ω
2j + · · ·+ a1ω

(k−1)j
]
= λjω

ij .

It follows that C · vj = λj · vj , so vj is an eigenvector with eigenvalue λj .

Lemma 12. Assume that you have a k × k circulant matrix C with entries in a field F that has
k distinct kth roots of unity. Then the eigenvectors

vj =


1
ωj

ω2j

...
ω(k−1)j


form a basis for the vector space Fk and thus C is diagonalizable.

Proof. Let V be the matrix [vj : 0 ≤ j ≤ k − 1]. Note that V is a Vandermonde matrix. Thus

det(V ) =
∏

0≤i<j≤k−1

(ωj − ωi).

Suppose det(V ) = 0. Then ωj − ωi = 0 for some i ̸= j. This is a contradiction with the fact that
F has k distinct kth roots of unity. Hence, det(V ) ̸= 0 and the eigenvectors vj form a basis of Fk

and C is diagonalizable.

Corollary 4. If C is a k× k circulant matrix over a field F which has an algebraic extension with
k distinct kth roots of unity,

det(C) =

k−1∏
j=0

(a0 + a1ω
j + · · ·+ ak−1ω

(k−1)j) =

k−1∏
j=0

f(ωj)

where f is the associated polynomial of C.

Proof. The determinant of a diagonalizable matrix is the product of the eigenvalues (including
multiplicities) listed in Lemma 11.

Lemma 13. The rank of a k×k circulant matrix C over a field F which has an algebraic extension
with k distinct kth roots of unity is equal to k − d where d is the degree of gcd(f(x), xk − 1).

Proof. Let d be the dimension of the null space of C which is equal to the multiplicity of the
eigenvalue 0. An eigenvalue λj = 0 if and only if a0 + ak−1ω

j + · · · + a1ω
(k−1)j = f(ωj) = 0.

Hence, the dimension of the null space is equal to the number of kth roots of unity which are
also roots of f(x). Therefore, d is the degree of the polynomial gcd(f(x), xk − 1) and we obtain
rank(C) = k − d.

Lemma 14. Suppose p1 and p2 are distinct prime integers and p1 is a generator for the cyclic
group F×

p2
. Then xp2−1 + · · ·+ x+ 1 is irreducible over Fp1

.

Proof. Let ω be a primitive p2th root of unity of Fp1
. The group Gal(Fp1

(ω)/Fp1
) is generated by

the Frobenius automorphism ϕ : x 7→ xp1 [1, Proposition 5.8, page 445]. Since p1 generates F×
p2
,

we see that |ϕ| = p2 − 1. Thus, [Fp1
(ω) : Fp1

] = p2 − 1 and xp2−1 + · · ·+ x+ 1 is irreducible over
Fp1 .

Corollary 5. Let p1 and p2 be primes such that p1 is a generator for the cyclic group F×
p2
. Suppose

that C is a p2 × p2 circulant matrix with entries in Fp1
. Then rank(C) = 0, 1, p2 − 1, or p2.

Proof. By Lemma 14, we know that xp2−1 + · · · + x + 1 is irreducible over Fp1 . Hence xp2 − 1
factors as (x− 1)(xp2−1 + · · ·+ x+ 1) over Fp1

. By Lemma 13, we see that d = 0, 1, p2 − 1, or p2
from which our result follows.
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7 Results for n = p Prime

In Section 4.1, we gave a description of the monodromy group in terms of the elementary divisors
of a particular circulant matrix. Although this result (Theorem 2) allows one to easily compute
the monodromy group, the result is not explicit. We will prove several results below in the special
case when n is equal to a prime p. In other words, [a0, . . . , ak−1] represent an algebraic k-gon
modulo a prime p. In this case, the group N can be viewed as a Z/pZ = Fp module and is thus a
vector space. In this section, Fp will denote the finite field with p elements and F×

p will denote its
group of units.

Proposition 6. Suppose that [a0, . . . , ak−1] represents an algebraic k-gon modulo a prime p. Let
f(x) = a0+a1x+ · · ·+ak−1x

k−1 and let d be the degree of gcd(f(x), xk−1). Then the monodromy
group of [a0, . . . , ak−1] is G(a0, . . . , ak−1) = Ck−d

p ⋊ Ck.

Proof. By Lemma 13, we know that the rank of the matrix

C =



a0 ak−1 . . . a2 a1
a1 a0 ak−1 a2
... a1 a0

. . .
...

ak−2
. . .

. . . ak−1

ak−1 ak−2 . . . a1 a0


is equal to k − d where d is the degree of gcd(f(x), xk − 1). The rank of a subspace of a vector
space determines the group structure and the result follows.

This allows us to translate the problem of finding the rank of a matrix to that of a degree of
a gcd. The following corollary shows how we can use this connection to compute the monodromy
groups of a large collection of dessins on rational billiards surfaces.

Corollary 6. Suppose p2 is a prime number and p1 is a prime number that generates the cyclic
group (Fp2

)×. Suppose that [a0, . . . , ap2−1] represents an algebraic p2-gon modulo p1 with mon-
odromy group G(a0, . . . , ap2−1). Let f(x) = a0 + a1x+ · · ·+ ap2−1x

p2−1, then G(a0, . . . , ap2−1) ∼=
Cp2−1

p1
⋊ Cp2 .

Proof. By Corollary 5, the rank of the appropriate matrix C is 0, 1, p2 − 1, or p2. Since f(1) ≡ 0
mod p1, we know x−1|f(x) and thus rank(C) ≤ p2−1. Since xp2−1+ · · ·+x+1 is irreducible over
Fp1

by Lemma 14, the deg(gcd(f(x), xp2 − 1)) = 1 or p2. If deg(gcd(f(x), x
p2 − 1)) = p2 then a0 =

· · · = ap2−1 = 0 since deg(f) ≤ p2−1, which is a contradiction. Hence, deg(gcd(f(x), xp2 −1)) = 1
and the result follows.

Example 7. Choose p2 = 17. Observe that p1 = 41 generates the multiplicative group F×
17.

Hence, any algebraic 17-gon modulo 41 has monodromy group C16
41 ⋊ C17.

7.1 Possible Monodromy Groups

Now, let’s prove a general theorem that lists all possible monodromy groups for polygons [a0, . . . , ak−1]
modulo p.

Proposition 7. Suppose that [a0, . . . , ak−1] represents an algebraic polygon modulo a prime p.
Let f(x) = a0+a1x+ · · ·+ak−1x

k−1 and suppose xk−1 =
∏

gi(x) where the gi(x) are irreducible

over Fp. Further suppose that gcd(f(x), xk − 1) =

ℓ∏
j=1

gij (x). Then the monodromy group of

[a0, . . . , ak−1] is G(a0, . . . , ak−1) = Ck−d
p ⋊ Ck where d =

m∑
j=1

deg(gij (x)).

In essence, Proposition 7 gives a list of all potential monodromy groups of algebraic k-gons
modulo p. If [a0, . . . , ak−1] is an algebraic k-gon modulo p with monodromy group Ck−d

p ⋊Ck then

d must be equal to the sum of degrees of distinct irreducible factors of xk − 1 in Fp. The factor
x− 1 must be one of these factors. If there is no way to add up to d the degrees deg(gij (x)) of a
subset of the irreducible factors gi(x) of x

k −1 in Fp, then such a monodromy group cannot occur.
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Example 8. Consider k = 3 and p = 5. We see that x3 − 1 factors as (x− 1)(x2 + x+ 1) modulo
5. Since x − 1 is required to be a factor of gcd(f(x), xk − 1), we see that this gcd cannot have
degree two. Therefore, the monodromy group C3−2

5 ⋊ C3 is not achieved by any algebraic 3-gon
modulo 5.

Proof of Proposition 7. By Proposition 6, we know that d is the degree of gcd(f(x), xk − 1). Since
the gcd must be a product of some subset of {gi(x)}, we see that d is the sum of the degrees of
some subset of {gi(x)}. The theorem follows.

Observe that ℓ ≥ 1 because f(1) = a0 + . . . ak−1 ≡ 0 mod p implies x− 1 divides f(x).

Theorem 3. Fix a prime p ∤ k. Suppose xk − 1 =
∏

gi(x) where the gi(x) are irreducible over

Fp. Let d =

ℓ∑
j=1

deg(gij (x)). Further suppose that gij = x − 1 for some ij . Then there exists an

algebraic k-gon [a0, . . . , ak−1] modulo p with monodromy group G(a0, . . . , ak−1) ∼= Ck−d
p ⋊ Ck.

Proof. Let f(x) =
∏

gij (x). We see that deg(gcd(f(x), xk−1)) = d. If f(x) = a0+ · · ·+ak−1x
k−1

then a0+· · ·+ak−1 ≡ 0 mod p since (x−1)|f(x). Since f(x) is not the zero polynomial over Fp, we
see that gcd(a0, . . . , ak−1, p) = 1. Therefore, [a0, . . . , ak−1] is an algebraic k-gon with monodromy
group G(a0, . . . , ak−1) ∼= Ck−d

p ⋊ Ck by Proposition 6.

Theorem 3 proves that all possible monodromy groups from Proposition 7 are achieved by
algebraic polygons modulo p for a fixed prime p. Therefore, it is natural to ask which groups
can occur for k-gons modulo p. The following theorem shows that for primes p > k, all possible
monodromy groups from Proposition 7 are achieved by k-gons modulo p.

Theorem 4. Fix a prime p > k ≥ 3. Suppose xk − 1 = g1(x) · · · gℓ(x) where the gi(x) are

irreducible over Fp. Let d =

m∑
j=1

deg(gij (x)) where m is a positive integer less than ℓ and 1 ≤ i1 <

· · · < im ≤ ℓ. Further suppose that gij = x−1 for some ij . Then there exists a k-gon [a0, . . . , ak−1]
modulo p with monodromy group G(a0, . . . , ak−1) ∼= Ck−d

p ⋊ Ck.

Remark. We only consider primes p > k in Theorem 4, because p ∤ k in this case. The polynomial,
xk−1, has no repeated factors over Fp when p ∤ k which implies that there is an algebraic extension
of Fp with k distinct kth roots of unity. Furthermore, Theorem 4 is not true for primes p ≤ k in
its current formulation. Consider k = 3 and p = 3. Since x3 − 1 = (x− 1)3 modulo 3, Theorem 4
would predict the existence of 3-gons with monodromy groups C2

3 ⋊C3 and C3⋊C3. However, the
only 3-gon is [1, 1, 1], and thus the only possible monodromy group of a 3-gon modulo 3 is C3⋊C3.

8 Proving Theorem 4

Here we lay out the basic strategy and supporting lemmas we will use to prove Theorem 4.

8.1 Strategy for Proving Theorem 4

Recall that Lemmas 8 and 9 allow us to construct a geometric polygon with monodromy group G
if we can find an algebraic polygon with all nonzero entries that has an isomorphic monodromy
group. To control the number of nonzero entries in an algebraic polygon, we define:

Definition 9. For a polynomial f(x) = anx
n + · · · + a1x + a0 with an ̸= 0, let w(f(x)) be the

maximum number of consecutive coefficients of f(x) that are zero. For example, if g(x) = x7−x3+1,
then w(g(x)) = 3 since a6 = a5 = a4 = 0 while a3, a7 ̸= 0.

Now, our strategy for proving Theorem 4 is the following:

1. For a given monodromy group G ∼= Ck−d
p ⋊ Ck described in Theorem 4, find an appropriate

polynomial g(x) satisfying g(x)|xk − 1, x− 1|g(x), and deg(g(x)) = d.

2. Using Proposition 8, multiply g(x) by a series of linear polynomials to produce a polynomial
f(x), each of which reduces the value of the w function but leaves gcd(f(x), xk − 1) = g(x).
Repeat until g(x) has been transformed into a polynomial f(x) =

∑
bix

i of degree k−1 with
w(f(x)) = 0 and gcd(f(x), xk − 1) = g(x).
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3. Use Lemmas 8 and 9 to transform [b0, . . . , bk−1] into a geometric polygon with monodromy
group G.

Remark. The proofs of Theorem 5 and Proposition 11 follow the above approach. However, the
proof of Proposition 12 differs slightly.

In the following proposition, we show that if we choose α appropriately, then w((x−α) ·f(x)) =
max(w(f(x))− 1, 0).

Proposition 8. Let F be a field. Suppose that f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ F[x]
with a0, an ̸= 0. If {α0, . . . , αn} are distinct non-zero elements of F, then there exists at least one
αi such that w(f(x) · (x− αi)) = max(w(f(x))− 1, 0).

Proof. Consider the coefficients of f(x) · (x−αi) = bn+1x
n+1+ bnx

n+ · · ·+ b1x+ b0. Observe that
b0, bn+1 ̸= 0. Further observe that for 0 < j < n+ 1, bj = aj−1 − αiaj . If bj = 0 then one of three
situations must arise:

(a) aj−1 = aj = 0

(b) aj−1 = αi = 0

(c) αi =
aj−1

aj
and aj ̸= 0

Situation (b) cannot arise, because αi is chosen from non-zero elements of F. By the pigeon hole
principle, there exists at least one αi in {α0, . . . , αn} such that αi ̸= aj−1

aj
for all 0 ≤ j ≤ n. Our

choice of αi prevents situation (c) from arising. Since situation (a) cannot occur if w(f(x)) = 0
then w(f(x) · (x− αi)) = 0 in this case.

Now we consider the case where w(f(x)) > 0. By our choice of αi, bj = 0 implies aj =
aj−1 = 0. Assume that w(f(x)) = d+ 1 which implies there exist aℓ, . . . , aℓ+d with aℓ−1 ̸= 0 and
aℓ+d+1 ̸= 0. We see that bℓ ̸= 0 and bℓ+d+1 ̸= 0 and bℓ+1, . . . , bℓ+d = 0. Hence, we have shown
that w(f(x) · (x− αi)) = w(f(x))− 1.

Now, we prove a useful result about the gcd of collections of polynomials with xk − 1.

Lemma 15. Let F be a field and let f(x) = adx
d+ · · ·+a1x+a0 ∈ F[x]. Then gcd(f(x), xk−1) =

gcd(x · f(x)− ak−1(x
k − 1), xk − 1).

Proof. Observe that gcd(f(x), xk − 1) = gcd(x · f(x), xk − 1) since x does not divide xk − 1. If
g(x) = gcd(x · f(x), xk − 1) then it is clear that g(x) divides x · f(x) − ak−1(x

k − 1). If h(x) =
gcd(x·f(x)−ak−1(x

k−1), xk−1), then h(x) divides x·f(x)−ak−1(x
k−1)+ak−1(x

k−1) = x·f(x).
Hence, gcd(f(x), xk − 1) = gcd(x · f(x)− ak−1(x

k − 1), xk − 1).

Example 9. Consider the field F2. Let f(x) = x5 + x2 + x+1. Using Lemma 15, we deduce that

gcd(x5 + x2 + x+ 1, x7 − 1) = gcd(x6 + x3 + x2 + x, x7 − 1) = gcd(x4 + x3 + x2 + 1, x7 − 1)

In the following proposition, we prove a result about the maximum value of w(f(x)) for poly-
nomials f(x) dividing xk − 1.

Proposition 9. Let F be a field and let f(x) = adx
d + . . . a1x+ a0 ∈ F[x]. Suppose that f(x) is

a non-zero polynomial with deg(f(x)) = d and f(x)|xk − 1. Then w(f(x)) < k − d.

Proof. If k−d ≥ d = deg(f(x)), then the result is trivial. Otherwise, suppose that w(f(x)) ≥ k−d.
This implies that f(x) has k − d consecutive coefficients equal to zero. For the purposes of this
proof, assume aℓ, . . . , aℓ+k−d−1 = 0 for some ℓ < d.

Use Lemma 15 exactly k − (ℓ+ k − d− 1)− 1 = d− ℓ times. That is, consider

g(x) = xd−ℓf(x)− (ak−1x
d−ℓ−1 + ak−2x

d−ℓ−2 + · · ·+ x · aℓ+k−d+1 + aℓ+k−d)(x
k − 1)

which can be rewritten as

g(x) =

k−1∑
i=d

ai−d+ℓx
i +

d−1∑
i=d−ℓ

ai−d+ℓx
i +

d−ℓ−1∑
i=0

ai+k−d+ℓx
i.

Lemma 15 states that gcd(g(x), xk − 1) = gcd(f(x), xk − 1). Since the first summation above
is equal to zero, we see that deg(g(x)) ≤ d− 1. This implies that deg(gcd(g(x), xk − 1)) < d which
is a contradiction since gcd(f(x), xk − 1) = f(x) and deg(f(x)) = d.

This proposition allows us to immediately obtain the following interesting corollary. Though
the result is surely known, we could not find a reference for it.

Corollary 7. If f(x) = ak−1x
k−1 + ak−2x

k−2 + · · · + a1x + a0 divides xk − 1 in a field F and
deg(f(x)) = k − 1 then ai ̸= 0 for 0 ≤ i ≤ k − 1.
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8.2 Proving Theorem 4 for p > k + 1

In this section, we prove Theorem 4 in the case where p > k + 1.

Proposition 10. Fix an integer k ≥ 3. Suppose that d|k and d < k. For primes p > k, there
exists a k-gon [a0, . . . , ak−1] modulo p with monodromy group G(a0, . . . , ak−1) ∼= Ck−d

p ⋊ Ck.

Proof. Consider f(x) = (xd − 1)
k
d−1(xd−1 + · · ·+ x+ 1) = b0 + b1x+ · · ·+ bk−1x

k−1. Since p > k,

the binomial coefficients in the expansion of (xd − 1)
k
d−1 are nonzero, and thus bi ̸≡ 0 mod p for

0 ≤ i ≤ k−1. Further observe that xk−1 has no repeated factors since p ∤ k. Since xd−1+· · ·+x+1
divides xd − 1 and xd − 1 divides xk − 1, we deduce that gcd(f(x), xk − 1) = xd − 1. Therefore,
[b0, . . . , bk−1] is an algebraic k-gon modulo p.

By Lemma 8, Lemma 9, Proposition 2, and Proposition 6, [b0, . . . , bk−1] has a k-gon associate
[a0, . . . , ak−1] modulo p with monodromy group G(a0, . . . , ak−1) ∼= Ck−d

p ⋊ Ck.

The following theorem is crucial in the proof of Theorem 4.

Theorem 5. Let k ≥ 3 be an integer, and let p > k be a prime. Suppose xk − 1 =
∏

gi(x) where

the gi(x) are irreducible over Fp. Let d =

ℓ∑
j=1

deg(gij (x)). Let M equal the number of roots of

xk−1∏
gij

in Fp. Further suppose that gij = x − 1 for some ij . If p > k + M , there exists a k-gon

[a0, . . . , ak−1] modulo p with monodromy group G(a0, . . . , ak−1) = Ck−d
p ⋊ Ck.

Proof. Let g(x) =
∏

gij (x) which implies deg(g(x)) = d. By Proposition 9, w(g(x)) < k − d. To
produce a degree k − 1 polynomial f(x) with gcd(f(x), xk − 1) = g(x), we will use Proposition 8
exactly k − d − 1 times. The result of this process will be a new polynomial f(x) equal to g(x)
times k − d− 1 linear polynomials, and f(x) will have the property that w(f(x)) = 0.

To use Proposition 8, we must have at least k distinct nonzero α ∈ Fp. Furthermore, these α

cannot be roots of xk−1
g(x) . If α were a root of xk−1

g(x) , then gcd((x − α) · g(x), xk − 1) would have

degree greater than d. Since Fp has p− 1 nonzero elements, we need p− 1 ≥ k +M to satisfy the
assumptions of Proposition 8 and thus we need p > k +M .

The result of using Proposition 8 exactly k − d− 1 times is a degree k − 1 polynomial f(x) =
bk−1x

k−1 + · · ·+ b1x+ b0 with bk−1, . . . , b0 ̸≡ 0 mod p. Observe that b0 + · · ·+ bk−1 ≡ 0 mod p
since x − 1|f(x). By Lemma 8, Lemma 9, and Proposition 6, there exists a k-gon [a0, . . . , ak−1]
modulo p with monodromy group G(a0, . . . , ak−1) ∼= Ck−d

p ⋊ Ck.

Theorem 5 proves Theorem 4 for most k and p as illustrated in the following corollary.

Corollary 8. Fix an integer k ≥ 3. Theorem 4 is true for primes p > k + 1.

Proof. Fix p > k+1. Suppose that gcd(p−1, k) = d. We claim that F×
p contains exactly d distinct

kth roots of unity. Observe that F×
p

∼= Cp−1
∼= Z/(p − 1)Z. Finding the number of kth roots of

unity in F×
p is equivalent to finding the number of solutions to kx ≡ 0 mod p − 1 in Z/(p − 1)Z.

Since gcd(kd , p − 1) = 1, we see that the number of solutions to kx = k
d (dx) ≡ 0 mod p − 1 is

the same as the number of solutions to dx ≡ 0 mod p− 1. Since d|p− 1, there are d solutions to
dx ≡ 0 mod p− 1 and thus F×

p contains exactly d distinct kth roots of unity. The remaining kth
roots of unity lie in an algebraic extension of Fp.

In Theorem 5, M ≤ d − 1 since the factor gij = x − 1 for some ij . Since p ̸= k + 1 and
gcd(p−1, k) = d, we deduce that p > k+d > k+M . Thus, Theorem 4 is true when p > k+1.

Remark. To prove Theorem 4, one need only verify it for integers k ≥ 3 where p = k+1 is prime.

8.3 Proving Theorem 4 for p = k + 1

In this section, we prove Theorem 4 in the remaining cases in which p = k + 1.

Remark. If p = k+1 then xk−1 splits completely into linear terms over Fp since x
p−x = x(xk−1)

is the polynomial whose roots are the elements of Fp.

Lemma 16. Suppose p = k + 1 is an odd prime. Let d|k with d > 1. There exists a polynomial
xd − a ∈ Fp[x] with no roots in Fp.
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Proof. Since F×
p is a cyclic group under multiplication, let a be a generator of this cyclic group. We

claim xd−a has no roots in Fp. Suppose x
d−a had a root in Fp. This would imply that there exists

an element b ∈ Fp satisfying bd = a. However, this would imply that ak/d = (bd)k/d = bk = 1, a
contradiction with the fact that the order of a under multiplication is k.

Proposition 11. Suppose p = k + 1 is an odd prime. Further suppose 0 < d < k
2 . There exists a

k-gon [a0, . . . , ak−1] modulo p with monodromy group G(a0, . . . , ak−1) = Ck−d
p ⋊ Ck.

Proof. By Lemma 16, there exists a polynomial xk/2 − a that has no linear factors in Fp. Thus,
gcd(xk/2−a, xk−1) = 1. We need to produce a polynomial g(x) of degree k

2−1 so that w(g(x)) = 0

and the gcd(g(x), xk − 1) has degree d. If we can find such a g(x), then h(x) = (xk/2 − a) · g(x)
has degree k − 1, the gcd(h(x), xk − 1) has degree d, and w(h(x)) = 0.

Consider (x − 1)k/2−d whose coefficients are nonzero modulo p. We need to find a sequence

of distinct elements αi ∈ Fp so that if we set g(x) = (x − 1)k/2−d

d−1∏
i=1

(x− αi) then w(g(x)) = 0.

We proceed by induction. Suppose we have already found j distinct elements αi ∈ Fp so that

g̃(x) = (x − 1)k/2−d

j∏
i=1

(x− αi) and w(g̃(x)) = 0. How many choices for αj+1 are there? By

Proposition 8, since deg(g̃) = k
2 −d+ j, we need more than k

2 −d+ j choices to select αj+1 so that
w(g̃ · (x− αj+1)) = 0. We also remove j possible nonzero elements of Fp from consideration when
we choose αj+1 to ensure all αi are distinct. Since j < d < k

2 , we see that
k
2 − d+ j < k− j. Thus,

by the pigeon hole principle, there exists a nonzero αj+1 so that the αi are distinct for 1 ≤ i ≤ j+1
and w(g̃ · (x− αj+1)) = 0.

By induction, we have shown there exists a polynomial g(x) = (x− 1)k/2−d

d−1∏
i=1

(x− αi) where

the αi are distinct and w(g(x)) = 0. Now, let h(x) = g(x)·(xk/2−a). We see that deg(h(x)) = k−1,
the gcd(h(x), xk − 1) has degree d, and w(h(x)) = 0.

By Lemma 8, Lemma 9, and Proposition 6, there exists a k-gon [a0, . . . , ak−1] modulo p with
monodromy group G(a0, . . . , ak−1) ∼= Ck−d

p ⋊ Ck.

Proposition 12. Suppose k ≥ 3 and p = k+1 is prime. Further suppose k
2 < d < k. There exists

a k-gon [a0, . . . , ak−1] modulo p with monodromy group G(a0, . . . , ak−1) = Ck−d
p ⋊ Ck.

Proof. Since k is even, observe that xk/2 + 1 divides xk − 1. Let S be the set of roots of xk/2 + 1
in Fp. Choose a set T = {α1, . . . , αd−k/2} ⊂ F×

p so that the αi are distinct, α1 = 1, and αi ̸∈ S for
all i.

Setting g̃(x) =

d−k/2∏
i=1

(x− αi), observe that g̃(x) divides xk/2 − 1. By Proposition 9, we see

that w(g̃(x)) < k
2 − (d − k

2 ) = k − d < k
2 . Now, we want to use Proposition 8 exactly k − d − 1

times to find βj in Fp so that g(x) =

d−k/2∏
i=1

(x− αi) ·
k−d−1∏
j=1

(x− βj) and w(g(x)) = 0 and each

βj ∈ S ∪ T . If we have at least k
2 eligible distinct nonzero elements of Fp, we can use Proposition

8 exactly k − d − 1 times. Since there are d nonzero elements in S ∪ T and d > k
2 , we can use

Proposition 8 to select our βj . The result of using Proposition 8 these k − d − 1 times is the

polynomial g(x) =

d−k/2∏
i=1

(x− αi) ·
k−d−1∏
j=1

(x− βj) which has the properties that w(g(x)) = 0 and

each βj ∈ S ∪ T .
Now, let h(x) = g(x) · (xk/2 + 1). We see that deg(h(x)) = k − 1, that gcd(h(x), xk − 1) has

degree d, and that w(h(x)) = 0. By Lemma 8, Lemma 9, and Proposition 6, there exists a k-gon
[a0, . . . , ak−1] modulo p with monodromy group G(a0, . . . , ak−1) ∼= Ck−d

p ⋊ Ck.

Now, we proceed with the proof of Theorem 4.

Proof of Theorem 4. The case where p > k + 1 was proven in Corollary 8. Now consider the case
when p = k + 1 is an odd prime. If 1 ≤ d ≤ k − 1, we claim there exists a k-gon modulo p with
monodromy group Ck−d

p ⋊ Ck. The case where d < k
2 was proven in Proposition 11 and the case

where d > k
2 was proven in Proposition 12. The case where d = k

2 is a consequence of Proposition

10 because k
2 divides k. Thus, the proof of Theorem 4 is complete.
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9 Results for Composite n

In this section, we will prove several results about monodromy groups when n is composite relying
heavily on the theory of algebraic polygons from Section 5. This first proposition shows that you
can combine k-gons with relatively prime moduli to create a new k-gon whose monodromy group
is closely related to the monodromy groups of the initial k-gons.

Proposition 13. Suppose that [a0, . . . , ak−1] and [b0, . . . , bk−1] represent k-gons modulo n1 and
n2 respectively where gcd(n1, n2) = 1. Suppose their respective monodromy groups are N1 ⋊ Ck

and N2 ⋊ Ck. Then there exists a k-gon [c0, . . . , ck−1] modulo n1n2 with monodromy group
(N1 ×N2)⋊ Ck.

Proof. This proposition is an immediate consequence of Proposition 3, Lemma 8, and Lemma
9.

Here is an example of the use of Proposition 13.

Example 10. Consider the quadrilateral [a0, a1, a2, a3] = [1, 4, 4, 1] which has modulus n1 = 5.
The monodromy group of D(1, 4, 4, 1) is C2

5 ⋊ C4. Also consider the quadrilateral [b0, b1, b2, b3] =
[2, 3, 4, 3] which has modulus n2 = 6. The monodromy group ofD(2, 3, 4, 3) is C2

6⋊C4. We can solve
a system of four congruences modulo 5 · 6 = 30. Observe that if we set [c0, c1, c2, c3] = [26, 9, 4, 21]
then we have ci ≡ ai mod 5 and ci ≡ bi mod 6. We see that c0 + c1 + c2 + c3 = 2 · 30. If
this had not been the case, we could have modified the coefficients using Lemma 8 and Lemma 9
without changing the monodromy group. Finally, one can compute that the monodromy group of
D(26, 9, 4, 21) is C2

30 ⋊ C4
∼= (C2

5 × C2
6 )⋊ C4.

You can use Proposition 4 to project a k-gon modulo n1n2 to an algebraic k-gon modulo n1.
However, this proposition does not guarantee that the new algebraic k-gon will have a k-gon
associate as illustrated in the following example.

Example 11. Consider the polygon [c0, c1, c2] = [1, 1, 4] modulo 6 which has monodromy group
(C6 × C2) ⋊ C3. Consider the reduction ci ≡ ai mod 2 to obtain [a0, a1, a2] = [1, 1, 0]. The
monodromy group of [1, 1, 0] modulo 2 is C2

2 ⋊C3. However, there do not exist any 3-gons modulo
2.

The above example illustrates how we must understand monodromy groups of algebraic poly-
gons, and not polygons, in order to classify all possible monodromy groups for k-gons modulo
composite n.

Proposition 14. Fix an abelian group N and a positive integer n =
∏

p
xj

j where the pj are
distinct primes. There exists a k-gon [c0, . . . , ck−1] modulo n with monodromy group N ⋊ Ck if

and only if there exist algebraic k-gons [a
(j)
0 , . . . , a

(j)
k−1] modulo p

xj

j with monodromy groups (N/

p
xj

j N)⋊ Ck and for every 0 ≤ i ≤ k − 1 there exists some j for which a
(j)
i ̸≡ 0 mod p

xj

j .

Proof. If [c0, . . . , ck−1] is a k-gon with the desired monodromy group N ⋊ Ck, then the forward
direction of the proof follows immediately from Proposition 4 and the fact that ci ̸≡ 0 mod n for
all i.

Suppose there exist algebraic k-gons [a
(j)
0 , . . . , a

(j)
k−1] modulo p

xj

j with monodromy groups (N/

p
xj

j N) ⋊ Ck and for every 0 ≤ i ≤ k − 1 there exists some j for which a
(j)
i ̸≡ 0 mod p

xj

j . The
reverse direction of the proof follows from Proposition 3, Lemma 8, and Lemma 9.

Remark. The condition that a
(j)
i ̸≡ 0 mod p

xj

j in Proposition 14 is satisfied if at least one of the

algebraic k-gons [a
(j)
0 , . . . , a

(j)
k−1] is an actual k-gon. This is sufficient but not necessary.

Proposition 14 translates the problem of understanding the monodromy groups of all algebraic
k-gons to the problem of understanding monodromy groups for algebraic k-gons with prime power
moduli.

Example 12. There does not exist a 3-gon modulo 35 with monodromy group N ⋊ C3 where
N ∼= C35 or where N ∼= C35 × C7. Suppose there were such a 3-gon [c0, c1, c2] modulo 35.
Then the projection of [c0, c1, c2] modulo 5 (using Proposition 4) would have monodromy group
7N ⋊ C3

∼= (N/5N) ⋊ C3 which is isomorphic to C5 ⋊ C3 in both the case where N ∼= C35 and
N ∼= C35 × C7. However, C5 ⋊ C3 is not a possible monodromy group for any algebraic 3-gon
modulo 5 by Proposition 7.
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9.1 Triangular Billiards Surfaces

One well-known property of the Smith Normal Form for Z is summarized in the following lemma.

Lemma 17 (Proposition 8.1, [10]). If d1, . . . , dk are the elementary divisors of the Smith Normal
Form of a matrix A over Z, then d1 · · · dj is equal to the gcd of the determinants of all j× j minors
of the matrix A.

This property allows us to reprove Corollary 2 using a method that will extend to the higher
k-gons.

Proof of Corollary 2. Consider the arbitrary rational triangle with angles
(a0π

n
,
a1π

n
,
a2π

n

)
, where

the ai are positive integers, a0 + a1 + a2 = n, and gcd(a0, a1, a2, n) = 1. The normal subgroup N

of the associated monodromy group is represented by the column span of C =

a0 a1 a2
a1 a2 a0
a2 a0 a1

 over

Z/nZ. Observe that

C =

a0 a1 a2
a1 a2 a0
a2 a0 a1

 =

 1 0 0
0 1 0
−1 −1 1

a0 a1 0
a1 a2 0
0 0 0

1 0 −1
0 1 −1
0 0 1

 .

The elementary divisors of C are the same as the elementary divisors of C ′ =

a0 a1 0
a1 a2 0
0 0 0

.
Using Lemma 17, we deduce that d1 = gcd(a0, a1, a2, n) = 1. By looking at the 2 × 2 minors of
C ′, we further deduce that d1d2 = d2 = gcd(a0a2 − a21, n). It then follows from Theorem 2 that
the monodromy group of the (a0, a1, a2) triangle is

(Cn × Cn/α)⋊ C3,

where d2 = α = gcd(n, a0a2 − a21).

Although Corollary 2 gives a formula for computing the monodromy group of the dessin drawn
on a triangular billiards surface, it does not specify which monodromy groups can arise. The fol-
lowing theorem classifies the monodromy groups of all rational triangular billiards surfaces modulo
n.

Theorem 6. Fix n ∈ N with n > 3. The set of possible monodromy groups for triangles modulo
n includes precisely those groups of the form (Cn×Cn/α)⋊C3 where α|n and α = 3i

∏
j p

nj

j where
the pj are primes congruent to 1 modulo 3, i ∈ {0, 1}, and nj ≥ 0. If n = 3, the only possible
monodromy group is C3 ⋊ C3.

The proof of this theorem utilizes results from algebraic number theory. Use any introductory
graduate book on the topic, such as [7], as a reference.

Proof. Recall that the monodromy group associated to the triangle (a0, a1, a2) modulo n is (Cn ×
Cn/α)⋊ C3 where α = gcd(a0a2 − a21, n). What values can a0a2 − a21 take modulo n?

Observe that a2 ≡ −a0−a1 (mod n). Hence, a0a2−a21 ≡ a0(−a0−a1)−a21 ≡ −(a20+a0a1+a21)
mod n. Further observe that a20+a0a1+a21 = N(a0−a1ζ3) where ζ3 is a third root of unity and N
is the norm map from Z[ζ3] to Z. So we can answer the question about the possible values of α by
asking what values are in the image of the norm map. However, there are some restrictions on a0
and a1. Since gcd(a0, a1, a2, n) = 1 and a0+a1+a2 = n, we deduce that gcd(a0, a1, n) = 1. Hence,
if a0 and a1 have a common factor greater than 1, that factor does not divide n. Therefore, to find
a triangle modulo n with monodromy group (Cn × Cn/α)⋊ C3, we must find an ideal (a0 − a1ζ3)
in Z[ζ3] with the properties that gcd(N(a0 − a1ζ3), n) = α and gcd(a0, a1, n) = 1.

The fact that the norm map is multiplicative will allow us to answer the question by examining
ideals with norm of prime power order. Since ideals factor uniquely as products of prime ideals
in Z[ζ3], suppose the ideal (a0 − a1ζ3) =

∏
p
nj

j where the pj are distinct prime ideals in Z[ζ3]. If
pj = (b0 − b1ζ3) then gcd(b0, b1, n) = 1. If gcd(b0, b1, n) ̸= 1, then gcd(a0, a1, n) ̸= 1. Secondly, if
pnj | gcd(N(a0 − a1ζ3), n) one of the following three situations must arise:

1. pnj/2 = (p)nj/2 is in the factorization of the ideal (a0 − a1ζ) if p is an inert prime with
N(p) = p2.
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2. px1p
nj−x
2 is in the factorization of the ideal (a0 − a1ζ3) if p1 and p2 are the two primes above

(p) in Z[ζ3]. In this case, N(p1) = N(p2) = p.

3. pnj is in the factorization of the ideal (a0 − a1ζ) if p is a ramified prime with N(p) = p.

To summarize, we want to know if, when p is a prime dividing n, does there exist an ideal
(b0 − b1ζ3) satisfying N(b0 − b1ζ3) = pnj with pnj |n and gcd(b0, b1, n) = 1?

First consider a prime p ≡ 2 mod 3. Observe that the ideal (p) ⊂ Z[ζ3] is an inert prime ideal
that has norm p2. Hence, p is not in the range of the norm map. If b0 − b1ζ3 ∈ Z[ζ3] has norm
pnj then the ideal generated by b0 − b1ζ3 has the property (b0 − b1ζ3) = (pnj/2) since ideals factor
uniquely as products of prime ideals in Z[ζ3]. Hence, p divides b0 and b1, which implies p ∤ n.
Hence, p ̸≡ 2 mod 3.

Now consider a prime p ≡ 1 mod 3. There is a prime ideal (y − zζ3) of norm p since the
ideal (p) splits in Z[ζ3]. Note that gcd(y, z) = 1 since N(y − zζ3) = y2 + yz + z2 = p. Set
(y − zζ3)

nj = (b0 − b1ζ3). Observe that the ideal (b0 − b1ζ3) is an ideal with norm pnj . Now, we
deduce gcd(b0, b1) = 1 from the fact that ideals factor uniquely in Z[ζ3]. Since N(b0 − b1ζ3) = pnj ,
the only factor they could have in common is p. But if p|b0 and p|b1 then the ideal (p) would
divide (y − zζ3)

nj , which is a contradiction since the ideal (p) factors as a product of two distinct
prime ideals of norm p, namely (y − zζ3) and (y − zζ23 ). Clearly, (y − zζ23 ) is not in the unique
factorization of (y − zζ3)

nj . Hence, gcd(b0, b1) = 1. Therefore, if p ≡ 1 mod 3 is a prime dividing
n, then there exist b0, b1 with gcd(b0, b1) = 1 and N(b0 − b1ζ3) = pnj .

Now consider the case when p = 3. The unique prime ideal of norm 3 in Z[ζ3] is (1 − ζ3).
If N(b0 − b1ζ3) = 3i where i > 1 then the ideal (3) would divide (b0 − b1ζ3) since the ideal
(1 − ζ3)

2 = (3). Since ideals have unique prime ideal factorizations in Z[ζ3], we would have 3|b0
and 3|b1, a contradiction. Hence, when p = 3, the only ideal (b0−b1ζ3) satisfying N(b0−b1ζ3) = 3i

with 3i|n and gcd(b0, b1, n) = 1 occurs when i ∈ {0, 1}.
Using the multiplicative property of the norm map, if α = 3i

∏
j p

nj

j divides n where the pj are
primes congruent to 1 modulo 3, i ∈ {0, 1}, and nj ≥ 0, then there exist positive integers a0, a1
with gcd(a0, a1, n) = 1, and gcd(a0a2 − a21, n) = α if a2 = n− a0 − a1. To use Lemma 8, we must
verify that a0, a1, a2 ̸≡ 0 mod n.

Assume α ̸= 1. By way of contradiction, assume one of the ai ≡ 0 mod n. Without loss
of generality, assume a2 ≡ 0. In this case, a0 ≡ −a1 mod n. Thus, a20 + a0a1 + a21 ≡ a20
mod n. Hence, gcd(N(a0 − a1ζ3), n) = gcd(a20 + a0a1 + a21, n) = gcd(a20, n). Since, gcd(a0, a1, n) =
gcd(a0,−a0, n) = 1, then gcd(N(a0 − a1ζ3), n) = gcd(a20, n) = 1, a contradiction.

Thus, if α ̸= 1, we can use Lemma 8 to adjust [a0, a1, a2] so that it is a geometric 3-gon
modulo n without altering the gcd’s above. Thus by Corollary 2, we have obtained the required
monodromy group when α ̸= 1.

Now consider the case when α = 1. Instead of showing ai ̸≡ 0 mod n in the above construction,
we instead find explicit geometric triangles with monodromy group (Cn × Cn) ⋊ C3. If 3 ∤ n,
then consider the triangle [1, 1, n − 2]. Observe that gcd(a20 + a0a1 + a22, n) = gcd(3, n) = 1.
Thus, [1, 1, n − 2] has monodromy group (Cn × Cn) ⋊ C3 when 3 ∤ n. Now consider the case
when 3|n. Consider the triangle [n3 − 1, n

3 ,
n
3 + 1]. This is a geometric triangle when n > 3.

Observe that a20 + a0a1 + a21 = (n3 − 1)2 + (n3 − 1)n3 + (n3 )
2 = 1 − n + n2

3 . Since 3|n, we see
that a20 + a0a1 + a21 ≡ 1 mod n. Thus gcd(a20 + a0a1 + a21, n) = 1 and the monodromy group of
[n3 − 1, n

3 ,
n
3 + 1] is (Cn × Cn)⋊ C3. In the case when n = 3, there is only one geometric triangle,

[1, 1, 1], which has monodromy group C3 ⋊ C3.

The following example illustrates how Theorem 6 can be used to classify the possible mon-
odromy groups modulo a composite number n.

Example 13. If n = 81, there are only two possible monodromy groups. The triangle [1, 2, 78] has
associated monodromy group (C81×C81)⋊C3 and the triangle [1, 1, 79] has associated monodromy
group (C81×C27)⋊C3. However, there does not exist a triangle with associated monodromy group
(C81 × C9)⋊ C3 or (C81 × C3)⋊ C3 or (C81)⋊ C3.

9.2 Quadrilateral Billiards Surfaces

One can also use Lemma 17 to produce an analogue of Corollary 2 in the quadrilateral case.

Proposition 15. Suppose that [a0, a1, a2, a3] represents a 4-gon modulo n. Let G(a0, a1, a2, a3)
be the monodromy group of the dessin D(a0, a1, a2, a3) drawn on the quadrilateral billiards surface
X(a0, a1, a2, a3). Then

G(a0, a1, a2, a3) ∼= (Cn × C n
d2

× C n
d3
)⋊ C4.
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where

d2 = gcd(a0a2 − a23, a0a1 − a2a3, a
2
0 − a22, a1a3 − a22, a0a3 − a1a2, a0a2 − a21, n)

and

d3 =

{
gcd( (a0+a2)((a0+a1)

2+(a1+a2)
2)

d2
, n) if d2 ̸= n

n if d2 = n.

Proof. The normal subgroup N of the associated monodromy group is represented by the column

span of C =


a0 a1 a2 a3
a1 a2 a3 a0
a2 a3 a0 a1
a3 a0 a1 a2

 over Z/nZ. Let ã3 = −a0 − a1 − a2. Consider the matrix

C ′ =


a0 a1 a2 ã3
a1 a2 ã3 a0
a2 ã3 a0 a1
ã3 a0 a1 a2

 . Observe that C ≡ C ′ mod n and thus they have the same elementary

divisors modulo n. We will proceed by finding the elementary divisors of C ′ over Z and then
reducing them modulo n to get the elementary divisors of C ′. Let d1, d2, d3, d4 be the elementary
divisors of C and let d̃1, d̃2, d̃3, d̃4 be the elementary divisors of C ′. Since gcd(a0, a1, a2, ã3, n) =
gcd(a0, a1, a2, a3, n) = 1, the gcd of the one by one minors is 1. Hence, d1 = d̃1 = 1 by Lemma 17.

Observe that

C ′ =


a0 a1 a2 ã3
a1 a2 ã3 a0
a2 ã3 a0 a1
ã3 a0 a1 a2

 =


1 0 0 0
0 1 0 0
0 0 1 0
−1 −1 −1 1



a0 a1 a2 0
a1 a2 ã3 0
a2 ã3 a0 0
0 0 0 0



1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 1

 .

Thus the elementary divisors of C ′ are the same modulo n as the elementary divisors of

C ′′ =


a0 a1 a2 0
a1 a2 ã3 0
a2 ã3 a0 0
0 0 0 0

 .

Hence, d4 = d̃4 = 0. To compute d2, we compute the gcd of the 2 by 2 minors of C ′′ of which there
are only 9 that are nonzero. Three of the minors are duplicates, thus leaving us with 6. These
minors are {a0a2− ã23, a0a1−a2ã3, a

2
0−a22, a1ã3−a22, a0ã3−a1a2, a0a2−a21}. Using Lemma 17, we

obtain d2 = gcd(d̃2, n) = gcd(a0a2 − a23, a0a1 − a2a3, a
2
0 − a22, a1a3 − a22, a0a3 − a1a2, a0a2 − a21, n).

Lastly, d̃3 will be equal to the third elementary divisor of C ′ which is the same as the third ele-

mentary divisor of

a0 a1 a2
a1 a2 ã3
a2 ã3 a0

 . By Lemma 17, we know that d̃2d̃3 = det

a0 a1 a2
a1 a2 ã3
a2 ã3 a0

 = a20a2+

2a1a2ã3−a32−a0ã
2
3−a0a

2
1 = −(a0+a2)((a0+a1)

2+(a1+a2)
2). Hence, d̃3 = (a0+a2)((a0+a1)

2+(a1+a2)
2)

d̃2

provided d̃2 ̸= 0. If d̃2 = 0 then d̃3 = 0. Therefore, d3 = gcd(d̃3, n) = gcd( (a0+a2)((a0+a1)
2+(a1+a2)

2)
d2

, n)
unless d2 = n in which case d3 = n.

10 Future Directions

There are many questions that naturally arose in the study of monodromy groups of dessin drawn
on rational billiards surfaces. Here are some possible future questions to investigate.

Question 1. Throughout this paper, we used Proposition 2, Lemma 8, and Lemma 9 many times
to produce a polygon with the same monodromy group as a particular algebraic polygon. Using
Lemma 8, we can produce an associate convex polygon in the case where the modulus n = p is
prime and p ≥ k. It is natural to ask if G is the monodromy group of a k-gon modulo n, is it the
monodromy group of a convex k-gon modulo n?

Question 2. How can one generalize Theorem 4 to primes p ≤ k? For p ≤ k, a monodromy
group attained by an algebraic k-gon may not be attainable by a k-gon. For example, x6 − 1 =
(x − 1)2(x2 + x + 1)2 modulo 2. Thus, there exist algebraic 6-gons modulo 2 with monodromy
groups C2⋊C6, C

2
2 ⋊C6, C

3
2 ⋊C6, C

4
2 ⋊C6, and C5

2 ⋊C6. However, there is only one 6-gon modulo
2, namely [3, 1, 1, 1, 1, 1], which has monodromy group C2 ⋊ C6.
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Question 3. Can one generalize Proposition 15 to k-gons where k > 4?

Question 4. In Theorem 6, we classified which groups appear as the monodromy group of a
triangle. Can one prove an analogous result for the monodromy groups that arise for an arbitrary
k-gon?
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